Utilizing a categorical predictor
ggplot(weather_WU, aes(x = temp3pm, fill = location)) +
geom_density(alpha = 0.5)
ggplot(weather_WU, aes(x=temp3pm , y=location)) +
geom_col()
weather_WU%>%
group_by(location)%>%
reframe(avg=mean(temp3pm),sd=sd(temp3pm),)
## # A tibble: 2 × 3
## location avg sd
## <fct> <dbl> <dbl>
## 1 Uluru 29.7 6.82
## 2 Wollongong 19.4 3.66
weather_model_2 <- stan_glm(
temp3pm ~ location,
data = weather_WU,
family = gaussian,
prior_intercept = normal(25, 5),
prior = normal(0, 2.5, autoscale = TRUE),
prior_aux = exponential(1, autoscale = TRUE),
chains = 4, iter = 5000*2, seed = 84735)
# MCMC diagnostics
mcmc_trace(weather_model_2, size = 0.1)
mcmc_dens_overlay(weather_model_2)
mcmc_acf(weather_model_2)
tidy(weather_model_2, effects = c("fixed", "aux"),
conf.int = TRUE, conf.level = 0.80) %>%
select(-std.error)
## # A tibble: 4 × 4
## term estimate conf.low conf.high
## <chr> <dbl> <dbl> <dbl>
## 1 (Intercept) 29.7 29.0 30.4
## 2 locationWollongong -10.3 -11.3 -9.30
## 3 sigma 5.48 5.14 5.86
## 4 mean_PPD 24.6 23.9 25.3
as.data.frame(weather_model_2) %>%
mutate(uluru = `(Intercept)`,
wollongong = `(Intercept)` + locationWollongong) %>%
mcmc_areas(pars = c("uluru", "wollongong"))