library(patchwork)
# Posterior predictive checks. For example:
p1<- pp_check(weather_model_1)+labs(title="Model 1")
p2<- pp_check(weather_model_2)+labs(title="Model 2")
p3<- pp_check(weather_model_3)+labs(title="Model 3")
p4<- pp_check(weather_model_4)+labs(title="Model 4")
(p1|p2|p3|p4) +
plot_layout(guides = "collect") &
theme(legend.position = "bottom")
Evaluating predictive accuracy using visualizations
set.seed(84735)
predictions_1 <- posterior_predict(weather_model_1,
newdata = weather_WU)
# Posterior predictive models for weather_model_1
ppc_intervals(weather_WU$temp3pm,
yrep = predictions_1,
x = weather_WU$temp9am,
prob = 0.5,
prob_outer = 0.95) +
labs(x = "temp9am", y = "temp3pm")
set.seed(84736)
predictions_2 <- posterior_predict(weather_model_2,
newdata = weather_WU)
# Posterior predictive models for weather_model_2
ppc_violin_grouped(weather_WU$temp3pm,
yrep = predictions_2,
group = weather_WU$location,
y_draw = "points") +
labs(y = "temp3pm")
set.seed(84737)
predictions_3 <- posterior_predict(weather_model_3,
newdata = weather_WU)
# Posterior predictive models for weather_model_3
ppc_intervals_grouped(weather_WU$temp3pm,
yrep = predictions_3,
x = weather_WU$temp9am,
group = weather_WU$location,
prob = 0.5,
prob_outer = 0.95,
facet_args = list(scales = "fixed")) +
labs(x = "temp9am", y = "temp3pm")