11.4 Dreaming bigger: Utilizing more than 2 predictors!
To improve our understanding and posterior predictive accuracy of afternoon temperatures, we can incorporate more and more predictors into our model.
%>%
weather_WU names()
## [1] "location" "windspeed9am" "humidity9am" "pressure9am" "temp9am"
## [6] "temp3pm"
<- stan_glm(
weather_model_4 ~ .,
temp3pm data = weather_WU,
family = gaussian,
prior_intercept = normal(25, 5),
prior = normal(0, 2.5, autoscale = TRUE),
prior_aux = exponential(1, autoscale = TRUE),
chains = 4, iter = 5000*2,
seed = 84735)
# Confirm prior specification
prior_summary(weather_model_4)
## Priors for model 'weather_model_4'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 25, scale = 5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [37.52, 2.37, 0.82,...])
##
## Auxiliary (sigma)
## Specified prior:
## ~ exponential(rate = 1)
## Adjusted prior:
## ~ exponential(rate = 0.13)
## ------
## See help('prior_summary.stanreg') for more details
# Check MCMC diagnostics
mcmc_trace(weather_model_4)
mcmc_dens_overlay(weather_model_4)
mcmc_acf(weather_model_4)
# Posterior summaries
posterior_interval(weather_model_4, prob = 0.95)
## 2.5% 97.5%
## (Intercept) -23.92281904 98.96184755
## locationWollongong -7.19827046 -5.66547243
## windspeed9am -0.05491239 0.02975158
## humidity9am -0.05169826 -0.01510501
## pressure9am -0.08255876 0.03669673
## temp9am 0.72892547 0.87455883
## sigma 2.10496742 2.57179996