12.5 Prior Distribution
Assuming these priors are independent.
\[\begin{array}{rcl} Y_{i} | \beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \sigma & \sim & \text{Pois}(\lambda_{i}) \\ \beta_{0c} & \sim & \text{N}(2, 0.5^{2}) \\ \beta_{1} & \sim & \text{N}(0, 0.17^{2}) \\ \beta_{2} & \sim & \text{N}(0, 4.97^{2}) \\ \beta_{3} & \sim & \text{N}(0, 5.60^{2}) \\ \end{array}\]
- “typical state” \(\lambda = 7\)
\[\log(\lambda) = \log(7) \approx 1.95 \approx 2\]
- logged number of laws \((2 \pm 2 \times 0.5)\)
\[(e^{1}, e^{3}) \approx (3, 20)\]
prior_summary(equality_model_prior)
## Priors for model 'equality_model_prior'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 2, scale = 0.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0], scale = [2.5,2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0,0], scale = [0.17,4.97,5.60])
## ------
## See help('prior_summary.stanreg') for more details
12.5.1 So Far
%>%
equality add_fitted_draws(equality_model_prior, n = 100) %>%
ggplot(aes(x = percent_urban, y = laws, color = historical)) +
geom_line(aes(y = .value, group = paste(historical, .draw))) +
labs(title = "Anti-Discrimination Laws",
subtitle = "Human Rights Campaign State Equality Index",
caption = "R4DS Bayes Rules book club") +
scale_color_manual(values = c("blue", "red", "purple")) +
theme_minimal() +
ylim(0, 100)