8.3 Posterior hypothesis testing
Hypothesis testing:
H0:π⩾ H_a: \pi < 0.2
One-sided tests
To evaluate exactly how plausible it is that \pi<0.2:
- calculate the posterior probability
P(\pi < 0.2|Y=14)
pbeta(0.20, 18, 92)
## [1] 0.8489856
P(H_0|Y=14)=0.151 P(H_a|Y=14)=0.849
\text{posterior odds}=\frac{P(H_a|Y=14)}{P(H_0|Y=14)} \approx 5.62
pbeta(0.20, 18, 92) / (1 - pbeta(0.20, 18, 92))
## [1] 5.621883
\text{prior odds}=\frac{P(H_a)}{P(H_0)} \approx 0.093
pbeta(0.20, 4, 6) / (1 - pbeta(0.20, 4, 6))
## [1] 0.09366321
\text{Bayes Factor}=\frac{\text{posterio odds}}{\text{prior odds}}
<- (pbeta(0.20, 18, 92) / (1 - pbeta(0.20, 18, 92))) / (pbeta(0.20, 4, 6) / (1 - pbeta(0.20, 4, 6)))
BF BF
## [1] 60.02232
BF=\left\{\begin{matrix} 1 & H_a\text{constant} \\ >1 & H_a\text{increased} \\ <1 & H_a\text{decreased} \\ \end{matrix}\right.
Two-sided tests
There’s not one recipe for success
H_0: \pi = 0.3 H_a: \pi \neq 0.3