8.3 Posterior hypothesis testing

Hypothesis testing:

H0:π H_a: \pi < 0.2

One-sided tests

To evaluate exactly how plausible it is that \pi<0.2:

  • calculate the posterior probability

P(\pi < 0.2|Y=14)

pbeta(0.20, 18, 92)
## [1] 0.8489856

P(H_0|Y=14)=0.151 P(H_a|Y=14)=0.849

\text{posterior odds}=\frac{P(H_a|Y=14)}{P(H_0|Y=14)} \approx 5.62

pbeta(0.20, 18, 92) / (1 - pbeta(0.20, 18, 92))
## [1] 5.621883

\text{prior odds}=\frac{P(H_a)}{P(H_0)} \approx 0.093

pbeta(0.20, 4, 6) / (1 - pbeta(0.20, 4, 6))
## [1] 0.09366321

\text{Bayes Factor}=\frac{\text{posterio odds}}{\text{prior odds}}

BF <- (pbeta(0.20, 18, 92) / (1 - pbeta(0.20, 18, 92))) / (pbeta(0.20, 4, 6) / (1 - pbeta(0.20, 4, 6)))
BF
## [1] 60.02232

BF=\left\{\begin{matrix} 1 & H_a\text{constant} \\ >1 & H_a\text{increased} \\ <1 & H_a\text{decreased} \\ \end{matrix}\right.

Two-sided tests

There’s not one recipe for success

H_0: \pi = 0.3 H_a: \pi \neq 0.3