5.9 Gamma-Poisson conjugate family 6/8
5.9.1 Gamma prior : Gamma and Exponential models
\(\tau\) continuous random variable but can only take + value
\[\tau \sim Gamma(s, r)\]
Probability density functions:
\[f(\tau) = \frac{r^s}{\Gamma (s)} \tau^{s - 1} e^{-r\tau} \quad for \quad \tau > 0 \] \[ E(\tau) = \frac{s}{r} ; Mode(\tau) = \frac{s - 1}{r} \quad for \quad s \geq 1; Var(\tau) = \frac{s}{r^2} \]
When s = 1 -> Exponential model = Gamma(1,r)
\[\tau \sim Exp(r)\]