5.14 Normal Model

YN(μ,σ2)

f(y)=12πσ2exp[(yμ)22σ2/n] for yϵ(,)

  plot_normal(mean,sd)
library(bayesrules)

5.14.1 Prior X Likelihood = Posterior

f(y|μ) x L(μ|y)

Starting from the prior model:

μN(6.5,0.42)

We are considering the adults with experience of concussion, in the football dataset.

library(tidyverse)
football%>%head
##     group years volume
## 1 control     0  6.175
## 2 control     0  6.220
## 3 control     0  6.360
## 4 control     0  6.465
## 5 control     0  6.540
## 6 control     0  6.780
football%>%count(group)
##           group  n
## 1       control 25
## 2    fb_concuss 25
## 3 fb_no_concuss 25

Let’s see the mean:

football%>%
  filter(group == "fb_concuss")%>%
  summarise(mean=mean(volume),sd=sd(volume))
##     mean        sd
## 1 5.7346 0.5933976
concussion_subjects <- football%>%
  filter(group == "fb_concuss")

concussion_subjects%>%
  ggplot(aes(x = volume)) + 
  geom_density()

L(y|y)exp[(5.735μ)2(0.52/25)]

plot_normal_likelihood(y = concussion_subjects$volume, sigma = 0.5)

plot_normal_normal(mean = 6.5, sd = 0.4, sigma = 0.5,
                   y_bar = 5.735, n = 25)

summarize_normal_normal(mean = 6.5, sd = 0.4, sigma = 0.5,
                        y_bar = 5.735, n = 25)
##       model mean mode         var         sd
## 1     prior 6.50 6.50 0.160000000 0.40000000
## 2 posterior 5.78 5.78 0.009411765 0.09701425