12.2 Normal Distribution
If we follow from previous chapters, our model looks like
\[Y_{i} | \beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \sigma \sim N(\mu_{i}, \sigma^{2})\]
with
\[\mu_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3}\]
12.2.1 Exploratory Data Visualization
ggplot(equality, aes(x = laws)) +
geom_histogram(color = "white", breaks = seq(0, 160, by = 10))
12.2.2 Outlier
# Identify the outlier
%>%
equality filter(laws == max(laws))
## # A tibble: 1 × 6
## state region gop_2016 laws historical percent_urban
## <fct> <fct> <dbl> <dbl> <fct> <dbl>
## 1 california west 31.6 155 dem 95
# Remove the outlier
<- equality %>%
equality filter(state != "california")
12.2.3 Predictor Variables
ggplot(equality, aes(y = laws, x = percent_urban, color = historical)) +
geom_point(size = 3) +
labs(title = "Anti-Discrimination Laws",
subtitle = "Human Rights Campaign State Equality Index",
caption = "R4DS Bayes Rules book club") +
scale_color_manual(values = c("blue", "red", "purple")) +
theme_minimal()