11.6 Evaluating predictive accuracy using cross-validation

set.seed(84735)
prediction_summary_cv(model = weather_model_1, 
                      data = weather_WU, k = 10)
## $folds
##    fold      mae mae_scaled within_50 within_95
## 1     1 3.564498  0.8445706      0.30      1.00
## 2     2 2.725559  0.6619840      0.55      0.90
## 3     3 3.023616  0.7514263      0.40      0.85
## 4     4 3.199433  0.7578761      0.50      1.00
## 5     5 3.790749  0.9170231      0.25      1.00
## 6     6 3.372913  0.7968418      0.45      1.00
## 7     7 2.880373  0.6953989      0.50      0.95
## 8     8 2.840581  0.6738942      0.50      1.00
## 9     9 4.096178  0.9900088      0.30      1.00
## 10   10 3.355105  0.8062387      0.30      1.00
## 
## $cv
##        mae mae_scaled within_50 within_95
## 1 3.284901  0.7895262     0.405      0.97