12.3 Normal Regression
# Simulate the Normal model
<- stan_glm(laws ~ percent_urban + historical,
equality_normal_sim data = equality,
family = gaussian,
prior_intercept = normal(7, 1.5),
prior = normal(0, 2.5, autoscale = TRUE),
prior_aux = exponential(1, autoscale = TRUE),
chains = 4, iter = 5000*2, seed = 84735)