12.4 Proportion of variance explained
First we look at the variance
names(USArrests_pca)
## [1] "sdev" "rotation" "center" "scale" "x"
<- USArrests_pca$sdev^2
pr.var pr.var
## [1] 2.4802416 0.9897652 0.3565632 0.1734301
Proportion of variance explained by each principal component:
<- pr.var / sum(pr.var)
pve pve
## [1] 0.62006039 0.24744129 0.08914080 0.04335752
par(mfrow = c(1, 2))
plot(pve, xlab = "Principal Component",
ylab = "Proportion of Variance Explained", ylim = c(0, 1),
type = "b")
plot(cumsum(pve), xlab = "Principal Component",
ylab = "Cumulative Proportion of Variance Explained", ylim = c(0, 1), type = "b")
<- data.matrix(scale(USArrests[,-1]))
X <- prcomp(X)
pcob summary(pcob)
## Importance of components:
## PC1 PC2 PC3 PC4
## Standard deviation 1.5749 0.9949 0.59713 0.41645
## Proportion of Variance 0.6201 0.2474 0.08914 0.04336
## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000