8.42 Final evaluation
Confusion matrix (train, best model)
augment(class_tree_final_fit, new_data = carseats_train) %>%
conf_mat(truth = High, estimate = .pred_class)
## Truth
## Prediction No Yes
## No 160 24
## Yes 17 99
augment(class_tree_final_fit, new_data = carseats_train) %>%
accuracy(truth = High, estimate = .pred_class)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.863
Training accuracy: 86.3%
Confusion matrix (test, best model)
augment(class_tree_final_fit, new_data = carseats_test) %>%
conf_mat(truth = High, estimate = .pred_class)
## Truth
## Prediction No Yes
## No 39 9
## Yes 20 32
augment(class_tree_final_fit, new_data = carseats_test) %>%
accuracy(truth = High, estimate = .pred_class)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.71
Testing accuracy: 71%