8.63 Evaluate the model
… and the rmse
is a little high in this case which is properly because we didn’t tune any of the parameters.
augment(boost_fit, new_data = carseats_train) %>%
rmse(truth = Sales, estimate = .pred)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 0.00162
augment(boost_fit, new_data = carseats_test) %>%
rmse(truth = Sales, estimate = .pred)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 1.38
Training RMSE: 0.00162 Testing RMSE: 1.38 (definitively overfitting)