13.12 Lab: Multiple Testing
Review of Hypothesis Tests
We begin by performing some one-sample \(t\)-tests using the t.test()
function.
First we create 100 variables, each consisting of 10 observations. The first 50 variables have mean \(0.5\) and variance \(1\), while the others have mean \(0\) and variance \(1\).
set.seed(6)
<- matrix(rnorm(10 * 100), 10, 100)
x 1:50] <- x[, 1:50] + 0.5 x[,
Calculate the t-test.
t.test(x[, 1], mu = 0)
##
## One Sample t-test
##
## data: x[, 1]
## t = 2.0841, df = 9, p-value = 0.06682
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.05171076 1.26242719
## sample estimates:
## mean of x
## 0.6053582
And with a for
we calculate the t-tests and the pvalues:
<- rep(0, 100)
p.values
for (i in 1:100)
<- t.test(x[, i], mu = 0)$p.value
p.values[i]
<- rep("Do not reject H0", 100)
decision <= .05] <- "Reject H0" decision[p.values
table(decision,
c(rep("H0 is False", 50), rep("H0 is True", 50))
)
##
## decision H0 is False H0 is True
## Do not reject H0 40 47
## Reject H0 10 3
Repeate the t-test:
<- matrix(rnorm(10 * 100), 10, 100)
x 1:50] <- x[, 1:50] + 1
x[,
for (i in 1:100)
<- t.test(x[, i], mu = 0)$p.value
p.values[i]
<- rep("Do not reject H0", 100)
decision <= .05] <- "Reject H0"
decision[p.values
table(decision,
c(rep("H0 is False", 50), rep("H0 is True", 50))
)
##
## decision H0 is False H0 is True
## Do not reject H0 9 49
## Reject H0 41 1