8.37 Evaluate the model
Confusion matrix (train)
augment(class_tree_fit, new_data = carseats_train) %>%
conf_mat(truth = High, estimate = .pred_class)
## Truth
## Prediction No Yes
## No 159 17
## Yes 18 106
augment(class_tree_fit, new_data = carseats_train) %>%
accuracy(truth = High, estimate = .pred_class)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.883
Training accuracy: 88.3%
Confusion matrix (test)
augment(class_tree_fit, new_data = carseats_test) %>%
conf_mat(truth = High, estimate = .pred_class)
## Truth
## Prediction No Yes
## No 39 7
## Yes 20 34
augment(class_tree_fit, new_data = carseats_test) %>%
accuracy(truth = High, estimate = .pred_class)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.73
Testing accuracy: 73% (overfit)