4.11 Poisson distribution
A count response variable \(Y\) (which takes on non-negative integer values) can be modeled using the Poisson distribution, where the probability that \(Y\) takes on a given count value \(k\) can be calculated as:
\(Pr(Y = k) = \frac{e^{-\lambda}\lambda^k}{k!}\) for \(k\) = 0, 1, 2, …
where \(\lambda\) represents both the expected value (mean) and variance of \(Y\):
\(Y = E(Y) = Var(Y)\)
=> “[I]f \(Y\) follows the Poisson distribution, then the larger the mean of \(Y\), the larger its variance.”
par(mfrow = c(2,2))
<- c(1:4)
lambda <- c(0:10)
k for (lam in lambda) {
<- (exp(-lam)*lam^k)/factorial(k)
Prk plot(k, Prk, type = 'b', ylim = c(0, 0.4), main = paste("lambda =", lam))
}