Displaying Formula

Formatting

To tweak the appearance of words use these formats:

Formatting Code Looks like
plain text \text{text Pr} text Pr
bold Greek symbol \boldsymbol{\epsilon} \boldsymbol{\epsilon}
typewriter \tt{blah} \tt{blah}
slide font \sf{blah} \sf{blah}
bold \mathbf{x} \mathbf{x}
plain \mathrm{text Pr} \mathrm{text Pr}
cursive \mathcal{S} \mathcal{S}
Blackboard bold \mathbb{R} \mathbb{R}

Symbols

Symbols Code
\stackrel{\text{def}}{=} \stackrel{\text{def}}{=}

Notation

Based on: https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html

Math Code
x = y $x = y$
x \approx y $x \approx y$
x < y $x < y$
x > y $x > y$
x \le y $x \le y$
x \ge y $x \ge y$
x \ge y $x \ge y$
x \times y $x \times y$
x^{n} $x^{n}$
x_{n} $x_{n}$
\overline{x} $\overline{x}$
\hat{x} $\hat{x}$
\widehat{SE} $\widehat{SE}$
\tilde{x} $\tilde{x}$
\frac{a}{b} $\frac{a}{b}$
\displaystyle \frac{a}{b} $\displaystyle \frac{a}{b}$
\binom{n}{k} $\binom{n}{k}$
x_{1} + x_{2} + \cdots + x_{n} $x_{1} + x_{2} + \cdots + x_{n}$
x_{1}, x_{2}, \dots, x_{n} $x_{1}, x_{2}, \dots, x_{n}$
\mathbf{x} = \langle x_{1}, x_{2}, \dots, x_{n}\rangle $\mathbf{x} = \langle x_{1}, x_{2}, \dots, x_{n}\rangle$
x \in A $x \in A$
|A| $|A|$
x \in A $x \in A$
x \subset B $x \subset B$
x \subseteq B $x \subseteq B$
A \cup B $A \cup B$
A \cap B $A \cap B$
X \sim {\sf Binom}(n, \pi) X \sim {\sf Binom}(n, \pi)$
\mathrm{P}(X \le x) = {\tt pbinom}(x, n, \pi) $\mathrm{P}(X \le x) = {\tt pbinom}(x, n, \pi)$
P(A \mid B) $P(A \mid B)$
\mathrm{P}(A \mid B) $\mathrm{P}(A \mid B)$
\{1, 2, 3\} $\{1, 2, 3\}$
\sin(x) $\sin(x)$
\log(x) $\log(x)$
\int_{a}^{b} $\int_{a}^{b}$
\left(\int_{a}^{b} f(x) \; dx\right) $\left(\int_{a}^{b} f(x) \; dx\right)$
\left[\int_{-\infty}^{\infty} f(x) \; dx\right] $\left[\int_{\-infty}^{\infty} f(x) \; dx\right]$
\left. F(x) \right|_{a}^{b} $\left. F(x) \right|_{a}^{b}$
\sum_{x = a}^{b} f(x) $\sum_{x = a}^{b} f(x)$
\prod_{x = a}^{b} f(x) $\prod_{x = a}^{b} f(x)$
\lim_{x \to \infty} f(x) $\lim_{x \to \infty} f(x)$
\displaystyle \lim_{x \to \infty} f(x) $\displaystyle \lim_{x \to \infty} f(x)$ `
RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (Y_n - \hat{Y}_i)^2} $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (Y_n - \hat{Y}_i)^2}$ `