Displaying Formula
Formatting
To tweak the appearance of words use these formats:
| Formatting | Code | Looks like | 
|---|---|---|
| plain text | \text{text Pr} | \(\text{text Pr}\) | 
| bold Greek symbol | \boldsymbol{\epsilon} | \(\boldsymbol{\epsilon}\) | 
| typewriter | \tt{blah} | \(\tt{blah}\) | 
| slide font | \sf{blah} | \(\sf{blah}\) | 
| bold | \mathbf{x} | \(\mathbf{x}\) | 
| plain | \mathrm{text Pr} | \(\mathrm{text Pr}\) | 
| cursive | \mathcal{S} | \(\mathcal{S}\) | 
| Blackboard bold | \mathbb{R} | \(\mathbb{R}\) | 
Notation
Based on: https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html
| Math | Code | 
|---|---|
| \(x = y\) | $x = y$ | 
| \(x \approx y\) | $x \approx y$ | 
| \(x < y\) | $x < y$ | 
| \(x > y\) | $x > y$ | 
| \(x \le y\) | $x \le y$ | 
| \(x \ge y\) | $x \ge y$ | 
| \(x \ge y\) | $x \ge y$ | 
| \(x \times y\) | $x \times y$ | 
| \(x^{n}\) | $x^{n}$ | 
| \(x_{n}\) | $x_{n}$ | 
| \(\overline{x}\) | $\overline{x}$ | 
| \(\hat{x}\) | $\hat{x}$ | 
| \(\widehat{SE}\) | $\widehat{SE}$ | 
| \(\tilde{x}\) | $\tilde{x}$ | 
| \(\frac{a}{b}\) | $\frac{a}{b}$ | 
| \(\displaystyle \frac{a}{b}\) | $\displaystyle \frac{a}{b}$ | 
| \(\binom{n}{k}\) | $\binom{n}{k}$ | 
| \(x_{1} + x_{2} + \cdots + x_{n}\) | $x_{1} + x_{2} + \cdots + x_{n}$ | 
| \(x_{1}, x_{2}, \dots, x_{n}\) | $x_{1}, x_{2}, \dots, x_{n}$ | 
| \(\mathbf{x} = \langle x_{1}, x_{2}, \dots, x_{n}\rangle\) | $\mathbf{x} = \langle x_{1}, x_{2}, \dots, x_{n}\rangle$ | 
| \(x \in A\) | $x \in A$ | 
| \(|A|\) | $|A|$ | 
| \(x \in A\) | $x \in A$ | 
| \(x \subset B\) | $x \subset B$ | 
| \(x \subseteq B\) | $x \subseteq B$ | 
| \(A \cup B\) | $A \cup B$ | 
| \(A \cap B\) | $A \cap B$ | 
| \(X \sim {\sf Binom}(n, \pi)\) | X \sim {\sf Binom}(n, \pi)$ | 
| \(\mathrm{P}(X \le x) = {\tt pbinom}(x, n, \pi)\) | $\mathrm{P}(X \le x) = {\tt pbinom}(x, n, \pi)$ | 
| \(P(A \mid B)\) | $P(A \mid B)$ | 
| \(\mathrm{P}(A \mid B)\) | $\mathrm{P}(A \mid B)$ | 
| \(\{1, 2, 3\}\) | $\{1, 2, 3\}$ | 
| \(\sin(x)\) | $\sin(x)$ | 
| \(\log(x)\) | $\log(x)$ | 
| \(\int_{a}^{b}\) | $\int_{a}^{b}$ | 
| \(\left(\int_{a}^{b} f(x) \; dx\right)\) | $\left(\int_{a}^{b} f(x) \; dx\right)$ | 
| \(\left[\int_{-\infty}^{\infty} f(x) \; dx\right]\) | $\left[\int_{\-infty}^{\infty} f(x) \; dx\right]$ | 
| \(\left. F(x) \right|_{a}^{b}\) | $\left. F(x) \right|_{a}^{b}$ | 
| \(\sum_{x = a}^{b} f(x)\) | $\sum_{x = a}^{b} f(x)$ | 
| \(\prod_{x = a}^{b} f(x)\) | $\prod_{x = a}^{b} f(x)$ | 
| \(\lim_{x \to \infty} f(x)\) | $\lim_{x \to \infty} f(x)$ | 
| \(\displaystyle \lim_{x \to \infty} f(x)\) | $\displaystyle \lim_{x \to \infty} f(x)$ ` | 
| \(RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (Y_n - \hat{Y}_i)^2}\) | $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (Y_n - \hat{Y}_i)^2}$ ` |