Displaying Formula

Formatting

To tweak the appearance of words use these formats:

Formatting Code Looks like
plain text \text{text Pr} \(\text{text Pr}\)
bold Greek symbol \boldsymbol{\epsilon} \(\boldsymbol{\epsilon}\)
typewriter \tt{blah} \(\tt{blah}\)
slide font \sf{blah} \(\sf{blah}\)
bold \mathbf{x} \(\mathbf{x}\)
plain \mathrm{text Pr} \(\mathrm{text Pr}\)
cursive \mathcal{S} \(\mathcal{S}\)
Blackboard bold \mathbb{R} \(\mathbb{R}\)

Symbols

Symbols Code
\(\stackrel{\text{def}}{=}\) \stackrel{\text{def}}{=}

Notation

Based on: https://www.calvin.edu/~rpruim/courses/s341/S17/from-class/MathinRmd.html

Math Code
\(x = y\) $x = y$
\(x \approx y\) $x \approx y$
\(x < y\) $x < y$
\(x > y\) $x > y$
\(x \le y\) $x \le y$
\(x \ge y\) $x \ge y$
\(x \ge y\) $x \ge y$
\(x \times y\) $x \times y$
\(x^{n}\) $x^{n}$
\(x_{n}\) $x_{n}$
\(\overline{x}\) $\overline{x}$
\(\hat{x}\) $\hat{x}$
\(\widehat{SE}\) $\widehat{SE}$
\(\tilde{x}\) $\tilde{x}$
\(\frac{a}{b}\) $\frac{a}{b}$
\(\displaystyle \frac{a}{b}\) $\displaystyle \frac{a}{b}$
\(\binom{n}{k}\) $\binom{n}{k}$
\(x_{1} + x_{2} + \cdots + x_{n}\) $x_{1} + x_{2} + \cdots + x_{n}$
\(x_{1}, x_{2}, \dots, x_{n}\) $x_{1}, x_{2}, \dots, x_{n}$
\(\mathbf{x} = \langle x_{1}, x_{2}, \dots, x_{n}\rangle\) $\mathbf{x} = \langle x_{1}, x_{2}, \dots, x_{n}\rangle$
\(x \in A\) $x \in A$
\(|A|\) $|A|$
\(x \in A\) $x \in A$
\(x \subset B\) $x \subset B$
\(x \subseteq B\) $x \subseteq B$
\(A \cup B\) $A \cup B$
\(A \cap B\) $A \cap B$
\(X \sim {\sf Binom}(n, \pi)\) X \sim {\sf Binom}(n, \pi)$
\(\mathrm{P}(X \le x) = {\tt pbinom}(x, n, \pi)\) $\mathrm{P}(X \le x) = {\tt pbinom}(x, n, \pi)$
\(P(A \mid B)\) $P(A \mid B)$
\(\mathrm{P}(A \mid B)\) $\mathrm{P}(A \mid B)$
\(\{1, 2, 3\}\) $\{1, 2, 3\}$
\(\sin(x)\) $\sin(x)$
\(\log(x)\) $\log(x)$
\(\int_{a}^{b}\) $\int_{a}^{b}$
\(\left(\int_{a}^{b} f(x) \; dx\right)\) $\left(\int_{a}^{b} f(x) \; dx\right)$
\(\left[\int_{-\infty}^{\infty} f(x) \; dx\right]\) $\left[\int_{\-infty}^{\infty} f(x) \; dx\right]$
\(\left. F(x) \right|_{a}^{b}\) $\left. F(x) \right|_{a}^{b}$
\(\sum_{x = a}^{b} f(x)\) $\sum_{x = a}^{b} f(x)$
\(\prod_{x = a}^{b} f(x)\) $\prod_{x = a}^{b} f(x)$
\(\lim_{x \to \infty} f(x)\) $\lim_{x \to \infty} f(x)$
\(\displaystyle \lim_{x \to \infty} f(x)\) $\displaystyle \lim_{x \to \infty} f(x)$ `
\(RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (Y_n - \hat{Y}_i)^2}\) $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (Y_n - \hat{Y}_i)^2}$ `