We notice some colors are closer to each other than others. We might want to use a clustering algorithm to see how they relate to each other.
## [1] "hclust"
With the tidygraph::as_tbl_graph()
function we can transorm the dataset into classes “tbl_graph”, “igraph” to make it ready to use for making a visualization of the network data.
## # A tbl_graph: 1313 nodes and 1312 edges
## #
## # A rooted tree
## #
## # Node Data: 1,313 × 4 (active)
## height leaf label members
## <dbl> <lgl> <chr> <int>
## 1 0 TRUE "101" 1
## 2 0 TRUE "427" 1
## 3 778. FALSE "" 2
## 4 0 TRUE "571" 1
## 5 0 TRUE "426" 1
## 6 0 TRUE "424" 1
## 7 0 TRUE "425" 1
## 8 0 FALSE "" 2
## 9 590. FALSE "" 3
## 10 1652. FALSE "" 4
## # ℹ 1,303 more rows
## #
## # Edge Data: 1,312 × 2
## from to
## <int> <int>
## 1 3 1
## 2 3 2
## 3 8 6
## # ℹ 1,309 more rows
## [1] "tbl_graph" "igraph"