GLM
# create spatial classification task
task = mlr3spatiotempcv::TaskClassifST$new(
id = "ecuador_lsl",
backend = mlr3::as_data_backend(lsl), # expects response and predictor vars
target = "lslpts",
positive = "TRUE",
coordinate_names = c("x", "y"),
coords_as_features = FALSE,
crs = "EPSG:32717"
)
# plot response against each predictor
mlr3viz::autoplot(task, type = "duo")
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
# plot all variables against each other (slightly long computation time)
mlr3viz::autoplot(task, type = "pairs")
- The
mlr3extralearners
package contains more information (but mlr3extralearners
was not currently available for R 4.3.0
)
Class
|
Name
|
Short name
|
Package
|
classif.adaboostm1
|
ada Boosting M1
|
adaboostm1
|
RWeka
|
classif.binomial
|
Binomial Regression
|
binomial
|
stats
|
classif.featureless
|
Featureless classifier
|
featureless
|
mlr
|
classif.fnn
|
Fast k-Nearest Neighbour
|
fnn
|
FNN
|
classif.gausspr
|
Gaussian Processes
|
gausspr
|
kernlab
|
classif.IBk
|
k-Nearest Neighbours
|
ibk
|
RWeka
|
learner = mlr3::lrn("classif.log_reg", predict_type = "prob")
# learner$help()