8.3 USING RECIPES
Preprocessing is part of a modeling workflow
<- linear_reg() %>%
lm_model set_engine("lm")
<- workflow() %>%
lm_wflow add_model(lm_model)
<-
lm_wflow %>%
lm_wflow add_formula(Sale_Price ~ Longitude + Latitude)
# lm_wflow %>%
# add_recipe(simple_ames)
<- lm_wflow %>%
lm_wflow ::remove_formula() %>%
workflowsadd_recipe(simple_ames)
<- fit(lm_wflow, ames_train)
lm_fit predict(lm_fit, ames_test %>% slice(1:3))
## # A tibble: 3 × 1
## .pred
## <dbl>
## 1 154932.
## 2 192414.
## 3 262260.
%>%
lm_fit extract_recipe(estimated = TRUE)
%>%
lm_fit # This returns the parsnip object:
extract_fit_parsnip() %>%
# Now tidy the linear model object:
tidy() %>%
slice(1:5)
## # A tibble: 5 × 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -2431230. 118494. -20.5 1.25e- 85
## 2 Gr_Liv_Area 263557. 7231. 36.4 3.48e-227
## 3 Year_Built 900. 59.5 15.1 2.94e- 49
## 4 Neighborhood_College_Creek 2098. 4235. 0.495 6.20e- 1
## 5 Neighborhood_Old_Town 4194. 4277. 0.981 3.27e- 1