Chapter 6 Fitting models with parsnip
Learning objectives:
- Identify ways in which model interfaces can differ. x
- Specify a model in
{parsnip}. x - Fit a model with
parsnip::fit()andparsnip::fit_xy(). x - Describe how
{parsnip}generalizes model arguments. x - Use
broom::tidy()to convert model objects to a tidy structure. x - Use
dplyr::bind_cols()and thepredict()methods from{parsnip}to make tidy predictions. - Find interfaces to other models in
{parsnip}-adjacent packages.
Modeling Map
modeling flow
- Chapter Setup Below
# load parsnip, recipes, rsample, broom...
library(tidymodels)
library(AmesHousing)
# attach data
data(ames)
# log scale price
ames <- mutate(ames, Sale_Price = log10(Sale_Price))
# train/test
set.seed(123)
ames_split <- initial_split(ames, prop = 0.80, strata = Sale_Price)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)