18.4 Local Explanations for Interactions
“Ceteris-paribus” profiles show how a model’s prediction would change if the value of a single exploratory variable changed
- Graphical representation is easy to understand and explain
- Not a valid assumption with highly correlated or interaction variables
#Ceterus Paribus
<- predict_profile(explainer = explainer_boost,
boost_paribus new_observation = sample_n(rush_df,1),
variables = c("rusher_age", "yardline_100"))
png(file="images/18_boost_paribus.png")
plot(boost_paribus, variables = c("rusher_age"))
dev.off()
png(file="images/18_boost_paribus2.png")
plot(boost_paribus, variables = c("yardline_100"))
dev.off()