library(tidyposterior)
library(rstanarm)
rqs_diff <- ames_folds %>%
bind_cols(rsq_estimates %>% arrange(id) %>% select(-id)) %>%
perf_mod(
prior_intercept = student_t(df = 1),
chains = 4,
iter = 5000,
seed = 2
) %>%
contrast_models(
list_1 = "with splines",
list_2 = "no splines",
seed = 36
)
summary(rqs_diff, size = 0.02) %>% # 0.02 is our practical effect size.
select(contrast, starts_with("pract"))
#> # A tibble: 1 x 4
#> contrast pract_neg pract_equiv pract_pos
#> <chr> <dbl> <dbl> <dbl>
#> 1 with splines vs no splines 0 0.989 0.0113