predictions %>%# Adding original Sale_Price tidyr::as_tibble() %>%mutate(observation =1:n(),actual = ames_test$Sale_Price) %>%# Transforming the data to long format tidyr::gather(tree, predicted, -c(observation, actual)) %>%# Transforming the tree column to integer to avoid problem arranging# group_by(observation) %>%# mutate(tree = stringr::str_extract(tree, '\\d+') %>% as.numeric()) %>%# ungroup() %>%mutate(tree = stringr::str_remove(tree, '^result\\.') %>%as.integer()) %>%arrange(observation, tree) %>%# For each observation Calculate the avg_prediction # with different number of treesgroup_by(observation) %>%mutate(avg_prediction =cummean(predicted)) %>%# Calculate the RMSE for each treegroup_by(tree) %>%summarize(RMSE =RMSE(avg_prediction, actual)) %>%# Plot the resultsggplot(aes(tree, RMSE)) +geom_line() +xlab('Number of trees')+theme_light()