7.1 Linear Regression Model
Model: \(y_t=\beta_0+\beta_1x_t+\epsilon_t\)
\(\beta_0\) is the intercept \(\beta_1\) is the slope
set.seed(123)
# Generate x values
x <- seq(0, 5, length.out = 100)
# Generate y values with a positive linear slope
# y <- 2*x + rnorm(100, mean = 5, sd = 8)
y <- 2*x + 3*x^2 + rnorm(100, mean = 0, sd = 20)
df <- tibble(x,y)
df %>%
ggplot(aes(x,y))+
geom_point()+
geom_smooth(method="lm")
## `geom_smooth()` using formula = 'y ~ x'