Uniform random variables
- Definition: Let \(X\) be a continuous uniform random variable defined in an interval \([a; b]\), then:
- \(f_X(x) = \dfrac{1}{b-a}\), if \(x\in [a; b]\).
- \(f_X(x) = 0\), if \(x\notin [a; b]\).
- Notation: \(X \sim Uniform(a, b)\)
- Theorem: If \(X \sim Uniform(a, b)\), then:
- \(\mathbb{E}[X] = \dfrac{a+b}{2}\).
- \(Var[X] = \dfrac{(b-a)^2}{12}\).