Uniform random variables
- Definition: Let X be a continuous uniform random variable defined in an interval [a;b], then:
- fX(x)=1b−a, if x∈[a;b].
- fX(x)=0, if x∉[a;b].
- Notation: X∼Uniform(a,b)
- Theorem: If X∼Uniform(a,b), then:
- E[X]=a+b2.
- Var[X]=(b−a)212.
# Uniform(0, 1)
x <- seq(-1, 2, 0.01)
plot(
x, dunif(x, 0, 1), type = 'l',
main = "PDF", xlab = "x", ylab = ""
)