Poisson random variable
- Definition: Let X be a Poisson random variable, then:
- pX(k)=λkk!e−λ, where λ is a fixed positive value called the Poisson rate, and k is a non-negative integer.
- Notation: X∼Poisson(λ)
- Theorem: Let X∼Poisson(λ), then:
- E[X]=λ
- E[X2]=λ+λ2
- Var[X]=λ
n <- 20
states <- 0:n
lambda <- 1
plot(
states, dpois(states, lambda), type = 'h',
ylim = c(0, 1), main = "Poisson(lambda)",
xlab = "States", ylab = "Probabilities"
)