Poisson random variable
- Definition: Let \(X\) be a Poisson random variable, then:
- \(p_X(k) = \dfrac{\lambda^k}{k!}e^{-\lambda}\), where \(\lambda\) is a fixed positive value called the Poisson rate, and \(k\) is a non-negative integer.
- Notation: \(X \sim Poisson(\lambda)\)
- Theorem: Let \(X \sim Poisson(\lambda)\), then:
- \(\mathbb{E}[X] = \lambda\)
- \(\mathbb{E}[X^2] = \lambda + \lambda^2\)
- \(Var[X] = \lambda\)