Multidimensional gaussians
An important case of a random vector is the multidimensional Gaussian. For d-dimensions:
fX(x)=1√(2π)d|Σ|exp(−12(x−μ)TΣ−1(x−μ)) It can be shown that:
E[X]=μ and Cov(X)=Σ
If the variables are independant this simplifies (as shown in text):
fX(x)=n∏i=11√(2π)σ2iexp(−(x−μi)22σ2i)
where σ2i=Var[Xi]