4.6 Gaussian Random Variables

  • It’s also called the normal random variable.

  • This is the most important continuous random variable, due to its wise use among all scientific disciplines.

  • Definition: Let X be a Gaussian random variable with parameters μ,σ2, then:

    • fX(x)=12πσ2 exp {(xμ)22σ2}
    • Notation: XGaussian(μ,σ2)N(μ,σ2)
  • Theorem: If XGaussian(μ,σ2), then:

    • E[X]=μ.
    • Var[X]=σ2.