Binomial random variable
- Definition: Let \(X\) be a binomial random variable, then:
\(p_X(k) = {n \choose k}p^k (1-p)^{n-k}\), where \(p\) is a fixed value in \((0, 1)\) called the binomial parameter, \(n\) is the total number of states, and \(k\) belongs in \(\left\{ 0, 1, \dots, n \right\}\)
Notation: \(X \sim Binomial(n, p)\)
- Theorem: Let \(X \sim Binomial(n, p)\), then:
- \(\mathbb{E}[X] = np\)
- \(\mathbb{E}[X^2] = np(np + (1-p))\)
- \(Var[X] = np\cdot (1-p)\)