Geometric random variable
- Definition: Let \(X\) be a geometric random variable, then:
- \(p_X(k) = (1-p)^{k-1}p\), where \(p\) is a fixed value in \((0, 1)\) called the geometric parameter and \(k\) is a positive integer.
- Notation: \(X \sim Geometric(p)\)
- Theorem: Let \(X \sim Geometric(p)\), then:
- \(\mathbb{E}[X] = 1/p\)
- \(\mathbb{E}[X^2] = 2/p^2 - 1/p\)
- \(Var[X] = \dfrac{1-p}{p^2}\)