Exponential random variables

  • Definition: Let X be an exponential random variable with parameter λ>0, then:
    • fX(x)=λeλx, if x0.
    • fX(x)=0, if x<0.
    • λ stands for the rate of decay … larger λ, faster decay.
    • Notation: XExponential(λ)
  • Theorem: If XExponential(λ), then:
    • E[X]=1λ.
    • Var[X]=1λ2.
  • Remember that a Poisson random variable describes the number of events that happend in a certain period. Then, an exponential variable is the interarrival time between two consecutive Poisson events; that is, how much time it takes to fo from N Poisson counts to N+1 Poisson counts.
# Exponential(lambda = 1)
x <- seq(0, 50, 0.01)
lambda <- 1

plot(
  x, dexp(x, 1), type = 'l',
  main = "PDF", xlab = "x", ylab = ""
)

plot(
  x, pexp(x, 1), type = 'l',
  main = "CDF", xlab = "x", ylab = "",
  ylim = c(0,1)
)