Processing math: 100%
Properties of expectation
- Theorem: Let X be a discrete random variable; g and h functions;
and c a real constant. Then, the following holds:
- E[g(X)]=∑x∈X(Ω)g(x)⋅pX(x)
- Linearity: E[g(X)+h(X)]=E[g(X)]+E[h(X)]
- Scaling: E[cX]=c⋅E[X]
- DC shift: E[c+X]=c+E[X]