Properties of expectation

  • Theorem: Let X be a discrete random variable; g and h functions; and c a real constant. Then, the following holds:
    • E[g(X)]=xX(Ω)g(x)pX(x)
    • Linearity: E[g(X)+h(X)]=E[g(X)]+E[h(X)]
    • Scaling: E[cX]=cE[X]
    • DC shift: E[c+X]=c+E[X]