Existence of expectation

  • Definition: A random variable X has an expectation if is absolutely integrable:

E[|X|]=Ω|x|fX(x)dx<

  • Theorem: Any random variable X satisfies |E[X]|E[|X|] .

  • Example: A random variable whose expectation is undefined is the Cauchy random variable: fX(x)=1π(1+x2), for xR.

E[|X|]=|x|1π(1+x2)dx=20xπ(1+x2)dx21xπ(1+x2)dx21xπ(x2+x2)dx=1π(log(x))|1=.