Existence of expectation
- Definition: A random variable X has an expectation if is absolutely integrable:
E[|X|]=∫Ω|x|fX(x)dx<∞
Theorem: Any random variable X satisfies |E[X]|≤E[|X|] .
Example: A random variable whose expectation is undefined is the Cauchy random variable: fX(x)=1π(1+x2), for x∈R.
E[|X|]=∞∫−∞|x|1π(1+x2)dx=2⋅∞∫0xπ(1+x2)dx≥2⋅∞∫1xπ(1+x2)dx≥2⋅∞∫1xπ(x2+x2)dx=1π(log(x))|∞1=∞.