Set Operations
Union: \(A \cup B = \{\xi \mid \xi \in A \text{ or } \xi \in B\}\)
Intersection \(A \cap B = \{\xi \mid \xi \in A \text{ and } \xi \in B\}\)
Complement: \(A^c = \{\xi \mid \xi \in \Omega \text{ and } \xi \notin A\} = \Omega \setminus A\)
Note the correspondence with logic: or, and, not
Difference: \(A\setminus B = \{\xi \mid \xi \in A \text{ and } \xi \notin B\} = A \cap B^c\)
## [1] 1 2 3 4 5 6
## [1] 2 4
## [1] 1 3 5