Example (Practice Exercise 5.8)

Find P[Y>y] where : XUniform[1,2]YXExponential(x)

We have then fYX=xexy (the Exponential distribution with rate x). For a given X, then we can compute P[Y>yX=x]:

P[Y>yX=x]=yxexydy=exy and we can now integrate over the entire (ΩX) distribution for x to get the final answer:

P[Y>y]=ΩXP[Y>yX=x]fX(x)dx=21exydx=1eyy