Example (Practice Exercise 5.8)
Find P[Y>y] where : X∼Uniform[1,2]Y∣X∼Exponential(x)
We have then fY∣X=xe−xy (the Exponential distribution with rate x). For a given X, then we can compute P[Y>y∣X=x]:
P[Y>y∣X=x]=∫∞yxe−xy′dy′=e−xy and we can now integrate over the entire (ΩX) distribution for x to get the final answer:
P[Y>y]=∫ΩXP[Y>y∣X=x]fX(x)dx=∫21e−xydx=1−e−yy