4.8 How Many Runs for a Win?
“ten-runs-equal-one-win” rule of thumb
Earlier:
\[\widehat{W_{\text{pct}}} = 0.5 + 0.0006*RD\]
- \(RD = 0 \rightarrow W_{\text{pct}} = 0.5\)
- Over 162 games: 81 wins
- \(RD = +10 \rightarrow W_{\text{pct}} = 0.506\)
- Over 162 games: 82 wins
4.8.1 Calculus
Ralph Caola derived the number of extra runs needed to get an extra win in a more rigorous way using calculus
\[W = \frac{G \cdot R^{2}}{R^{2} + RA^{2}}\]
$$ \[\begin{array}{rcl} \frac{\partial W}{\partial R} & = & \frac{\partial}{\partial R}\frac{G \cdot R^{2}}{R^{2} + RA^{2}} \\ ~ & = & \frac{2 \cdot G \cdot R \cdot RA^{2}}{(R^{2} + RA^{2})^{2}} \\ \end{array}\]$$
4.8.2 Incremental Runs per Win
\[IR/W = \frac{(R^{2} + RA^{2})^{2}}{2 \cdot G \cdot R \cdot RA^{2}}\]
We can make a user-defined function (and assuming rate statistics “runs per game” and “runs allowed per game” to remove \(G\)):
With two inputs, we will use a grid search to express different numbers of runs scored and runs allowed.
ir_table <- tidyr::expand_grid(RS = 1:7, RA = 1:7) |>
mutate(IRW = IR(RS, RA)) |>
pivot_wider(names_from = RA, values_from = "IRW",
names_prefix = "RA=")
Incremental runs per win | |||||||
as posed by Ralph Caola | |||||||
RS | RA=1 | RA=2 | RA=3 | RA=4 | RA=5 | RA=6 | RA=7 |
---|---|---|---|---|---|---|---|
1 | 2.0 | 3.1 | 5.6 | 9.0 | 13.5 | 19.0 | 25.5 |
2 | 6.2 | 4.0 | 4.7 | 6.2 | 8.4 | 11.1 | 14.3 |
3 | 16.7 | 7.0 | 6.0 | 6.5 | 7.7 | 9.4 | 11.4 |
4 | 36.1 | 12.5 | 8.7 | 8.0 | 8.4 | 9.4 | 10.8 |
5 | 67.6 | 21.0 | 12.8 | 10.5 | 10.0 | 10.3 | 11.2 |
6 | 114.1 | 33.3 | 18.8 | 14.1 | 12.4 | 12.0 | 12.3 |
7 | 178.6 | 50.2 | 26.7 | 18.9 | 15.6 | 14.3 | 14.0 |