Code snippets

  1. Compute Shapley values for Henry
set.seed(11)

shap_henry <- predict_parts(explainer = explain_rf, 
                            new_observation = henry, 
                            type = "shap",
                            B = 25)

shap_henry
##                                                 min           q1       median
## New Random Forest: age = 47             -0.14872225 -0.110022429 -0.058946498
## New Random Forest: class = 1st           0.10779338  0.168543072  0.182437245
## New Random Forest: embarked = Cherbourg  0.01765473  0.020325329  0.045746262
## New Random Forest: fare = 25            -0.03364295 -0.026465791 -0.009764386
## New Random Forest: gender = male        -0.15356865 -0.143723154 -0.131250657
## New Random Forest: parch = 0            -0.02327322 -0.007531944 -0.003043951
## New Random Forest: sibsp = 0            -0.03593203 -0.011468962 -0.002637970
##                                                 mean            q3          max
## New Random Forest: age = 47             -0.070780172 -0.0230765745 -0.016705029
## New Random Forest: class = 1st           0.175533412  0.1851354780  0.243139103
## New Random Forest: embarked = Cherbourg  0.050332941  0.0771913004  0.106751246
## New Random Forest: fare = 25            -0.002019465  0.0055777073  0.065804259
## New Random Forest: gender = male        -0.131233530 -0.1250222021 -0.105236973
## New Random Forest: parch = 0            -0.005057907 -0.0008337109  0.004019030
## New Random Forest: sibsp = 0            -0.006084749  0.0022025374  0.007650204