1.5 Predicting ridership on Chicago
This set will be widely used in the book to predict the number of people entering a train station daily.
library(modeldata)
::Chicago %>% head modeldata
## # A tibble: 6 × 50
## rider…¹ Austin Quinc…² Belmont Arche…³ Oak_P…⁴ Western Clark…⁵ Clinton Merch…⁶
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 15.7 1.46 8.37 4.60 2.01 1.42 3.32 15.6 2.40 6.48
## 2 15.8 1.50 8.35 4.72 2.09 1.43 3.34 15.7 2.40 6.48
## 3 15.9 1.52 8.36 4.68 2.11 1.49 3.36 15.6 2.37 6.40
## 4 15.9 1.49 7.85 4.77 2.17 1.44 3.36 15.7 2.42 6.49
## 5 15.4 1.50 7.62 4.72 2.06 1.42 3.27 15.6 2.42 5.80
## 6 2.42 0.693 0.911 2.27 0.624 0.426 1.11 2.41 0.814 0.858
## # … with 40 more variables: Irving_Park <dbl>, Washington_Wells <dbl>,
## # Harlem <dbl>, Monroe <dbl>, Polk <dbl>, Ashland <dbl>, Kedzie <dbl>,
## # Addison <dbl>, Jefferson_Park <dbl>, Montrose <dbl>, California <dbl>,
## # temp_min <dbl>, temp <dbl>, temp_max <dbl>, temp_change <dbl>, dew <dbl>,
## # humidity <dbl>, pressure <dbl>, pressure_change <dbl>, wind <dbl>,
## # wind_max <dbl>, gust <dbl>, gust_max <dbl>, percip <dbl>, percip_max <dbl>,
## # weather_rain <dbl>, weather_snow <dbl>, weather_cloud <dbl>, …
1.5.1 Extra Resources
Here is a nice example on how to Compute a sliding mean by Julia Silge