8.7 Missing Values for the Chicago ridership data
Chicago ridership raw entries
<-
only_rides %>%
raw_entries select(-date)
%>%
only_rides glimpse()
## Rows: 5,733
## Columns: 146
## $ s_40010 <dbl> 0.290, 1.240, 1.412, 1.388, 1.465, 0.613, 0.403, 1.463, 1.505,…
## $ s_40020 <dbl> 0.633, 2.950, 3.107, 3.259, 3.357, 1.569, 0.887, 3.222, 3.281,…
## $ s_40030 <dbl> 0.483, 1.230, 1.394, 1.370, 1.453, 0.839, 0.589, 1.500, 1.547,…
## $ s_40040 <dbl> 0.374, 7.737, 8.051, 8.027, 7.653, 0.844, 0.464, 8.371, 8.351,…
## $ s_40050 <dbl> 0.804, 3.199, 3.476, 3.540, 3.684, 2.467, 1.367, 3.544, 3.612,…
## $ s_40060 <dbl> 1.165, 4.046, 4.153, 4.362, 4.400, 2.231, 1.565, 4.599, 4.725,…
## $ s_40070 <dbl> 0.649, 5.777, 6.482, 6.766, 6.308, 1.798, 1.055, 7.341, 7.537,…
## $ s_40080 <dbl> 1.116, 3.854, 4.147, 4.202, 4.404, 2.545, 1.823, 4.527, 4.514,…
## $ s_40090 <dbl> 0.411, 1.823, 1.905, 2.008, 2.088, 1.024, 0.561, 2.095, 2.185,…
## $ s_40100 <dbl> 1.698, 3.807, 4.047, 4.107, 4.381, 3.021, 2.187, 4.411, 4.399,…
## $ s_40120 <dbl> 0.318, 1.654, 1.777, 1.878, 1.825, 0.650, 0.380, 2.009, 2.088,…
## $ s_40130 <dbl> 0.364, 0.913, 1.071, 0.994, 1.068, 0.599, 0.409, 1.174, 1.066,…
## $ s_40140 <dbl> 0.000, 2.107, 2.363, 2.379, 2.334, 0.000, 0.000, 2.522, 2.572,…
## $ s_40150 <dbl> 0.000, 0.398, 0.397, 0.456, 0.450, 0.004, 0.000, 0.461, 0.483,…
## $ s_40160 <dbl> 0.096, 3.508, 3.809, 3.820, 3.547, 0.310, 0.154, 3.780, 3.902,…
## $ s_40170 <dbl> 0.246, 1.142, 1.235, 1.343, 1.216, 0.558, 0.339, 1.460, 1.541,…
## $ s_40180 <dbl> 0.157, 1.156, 1.282, 1.357, 1.298, 0.358, 0.205, 1.421, 1.429,…
## $ s_40190 <dbl> 1.131, 2.661, 2.843, 3.023, 3.184, 1.977, 1.515, 3.420, 3.499,…
## $ s_40200 <dbl> 0.834, 5.194, 5.472, 5.503, 5.529, 1.885, 0.923, 5.616, 5.629,…
## $ s_40210 <dbl> 0.000, 0.566, 0.613, 0.629, 0.627, 0.001, 0.000, 0.666, 0.643,…
## $ s_40220 <dbl> 0.318, 0.702, 0.812, 0.774, 0.860, 0.654, 0.414, 0.945, 0.947,…
## $ s_40230 <dbl> 0.788, 4.110, 4.436, 4.541, 4.461, 1.520, 1.028, 4.885, 4.947,…
## $ s_40240 <dbl> 2.470, 6.075, 6.694, 7.097, 7.437, 4.715, 3.316, 7.496, 7.586,…
## $ s_40250 <dbl> 0.448, 1.074, 1.084, 1.106, 1.232, 0.868, 0.586, 1.280, 1.276,…
## $ s_40260 <dbl> 2.059, 7.286, 7.781, 7.808, 7.954, 3.662, 2.483, 8.082, 8.063,…
## $ s_40270 <dbl> 0.279, 1.104, 1.139, 1.203, 1.187, 0.688, 0.352, 1.208, 1.246,…
## $ s_40280 <dbl> 0.700, 1.835, 1.763, 2.076, 2.099, 1.208, 0.856, 2.240, 2.335,…
## $ s_40290 <dbl> 0.540, 1.523, 1.592, 1.698, 1.720, 0.862, 0.632, 1.810, 1.825,…
## $ s_40300 <dbl> 0.199, 0.456, 0.514, 0.474, 0.551, 0.279, 0.242, 0.573, 0.596,…
## $ s_40310 <dbl> 0.460, 2.627, 2.846, 3.086, 3.073, 0.994, 0.614, 3.319, 3.344,…
## $ s_40320 <dbl> 0.854, 3.650, 4.029, 4.158, 4.139, 1.933, 1.290, 4.370, 4.476,…
## $ s_40330 <dbl> 2.542, 7.790, 8.301, 8.543, 8.871, 5.234, 3.823, 8.221, 8.358,…
## $ s_40340 <dbl> 1.046, 2.891, 3.114, 3.176, 3.295, 1.979, 1.502, 3.298, 3.385,…
## $ s_40350 <dbl> 0.273, 1.775, 1.945, 2.049, 2.145, 0.729, 0.485, 4.663, 4.676,…
## $ s_40360 <dbl> 0.417, 2.409, 2.635, 2.672, 2.795, 0.964, 0.545, 2.691, 2.704,…
## $ s_40370 <dbl> 1.039, 7.757, 8.257, 8.303, 8.482, 2.143, 1.399, 8.397, 8.452,…
## $ s_40380 <dbl> 1.080, 13.263, 14.416, 15.118, 14.980, 2.267, 1.405, 15.561, 1…
## $ s_40390 <dbl> 0.660, 2.971, 3.241, 3.260, 3.395, 1.199, 0.752, 3.597, 3.672,…
## $ s_40400 <dbl> 0.072, 0.389, 0.459, 0.482, 0.534, 0.336, 0.180, 0.549, 0.553,…
## $ s_40420 <dbl> 0.000, 0.754, 0.791, 0.820, 0.892, 0.003, 0.000, 0.845, 0.836,…
## $ s_40430 <dbl> 0.546, 2.329, 2.409, 2.398, 2.389, 0.804, 0.676, 2.403, 2.402,…
## $ s_40440 <dbl> 0.000, 0.588, 0.677, 0.728, 0.723, 0.001, 0.000, 0.805, 0.821,…
## $ s_40450 <dbl> 3.948, 11.692, 12.824, 13.091, 13.263, 7.284, 5.134, 14.409, 1…
## $ s_40460 <dbl> 0.185, 5.350, 5.766, 5.824, 5.554, 0.775, 0.231, 6.481, 6.477,…
## $ s_40470 <dbl> 0.286, 1.142, 1.388, 1.574, 1.510, 0.765, 0.393, 2.528, 2.532,…
## $ s_40480 <dbl> 0.405, 1.019, 1.145, 1.222, 1.157, 0.709, 0.486, 1.321, 1.366,…
## $ s_40490 <dbl> 0.182, 1.003, 1.073, 1.106, 1.129, 0.533, 0.313, 1.132, 1.134,…
## $ s_40500 <dbl> 1.181, 6.507, 6.783, 6.906, 6.802, 2.582, 1.498, 6.909, 7.123,…
## $ s_40510 <dbl> 0.248, 0.617, 0.657, 0.697, 0.770, 0.443, 0.295, 0.695, 0.696,…
## $ s_40520 <dbl> 0.126, 0.546, 0.641, 0.720, 0.683, 0.416, 0.223, 0.708, 0.736,…
## $ s_40530 <dbl> 0.670, 3.858, 4.124, 4.151, 4.288, 1.825, 0.925, 4.380, 4.441,…
## $ s_40540 <dbl> 1.449, 3.519, 4.211, 4.132, 4.144, 2.780, 1.913, 4.603, 4.519,…
## $ s_40550 <dbl> 0.731, 3.444, 3.519, 3.591, 3.624, 1.582, 1.200, 3.744, 3.853,…
## $ s_40560 <dbl> 1.255, 8.712, 9.608, 9.735, 9.586, 3.411, 1.909, 12.197, 12.00…
## $ s_40570 <dbl> 0.666, 2.508, 2.617, 2.723, 2.661, 1.355, 0.884, 2.887, 2.863,…
## $ s_40580 <dbl> 0.000, 1.404, 1.466, 1.530, 1.554, 0.004, 0.000, 1.546, 1.495,…
## $ s_40590 <dbl> 0.870, 3.624, 3.793, 3.944, 4.020, 1.735, 1.229, 4.098, 4.180,…
## $ s_40600 <dbl> 0.000, 0.218, 0.269, 0.275, 0.253, 0.001, 0.000, 0.332, 0.337,…
## $ s_40610 <dbl> 0.141, 1.036, 1.222, 1.217, 1.201, 0.372, 0.195, 1.235, 1.303,…
## $ s_40630 <dbl> 2.314, 5.657, 6.012, 6.239, 6.405, 4.631, 3.355, 6.425, 6.630,…
## $ s_40640 <dbl> 0.368, 3.294, 3.523, 3.530, 3.767, 1.093, 0.342, 3.604, 3.832,…
## $ s_40650 <dbl> 1.156, 3.093, 3.263, 3.345, 3.491, 2.621, 1.802, 3.572, 3.605,…
## $ s_40660 <dbl> 0.355, 2.537, 2.831, 2.938, 2.846, 1.090, 0.499, 3.517, 3.566,…
## $ s_40670 <dbl> 0.621, 2.504, 2.601, 2.837, 2.740, 1.270, 0.812, 2.848, 2.959,…
## $ s_40680 <dbl> 0.700, 5.750, 6.149, 6.461, 6.311, 1.979, 0.943, 7.055, 7.619,…
## $ s_40690 <dbl> 0.177, 0.561, 0.628, 0.617, 0.679, 0.420, 0.269, 0.622, 0.612,…
## $ s_40700 <dbl> 0.346, 1.091, 1.128, 1.189, 1.223, 0.657, 0.378, 1.312, 1.416,…
## $ s_40710 <dbl> 0.384, 3.485, 3.797, 3.826, 3.806, 1.225, 0.554, 4.172, 4.248,…
## $ s_40720 <dbl> 0.391, 1.216, 1.316, 1.358, 1.387, 0.675, 0.474, 1.433, 1.399,…
## $ s_40730 <dbl> 0.259, 6.788, 7.321, 7.350, 6.983, 0.662, 0.307, 7.560, 7.576,…
## $ s_40740 <dbl> 0.000, 0.418, 0.457, 0.478, 0.505, 0.002, 0.000, 0.533, 0.505,…
## $ s_40750 <dbl> 0.469, 2.299, 2.443, 2.579, 2.542, 1.012, 0.625, 2.655, 2.760,…
## $ s_40760 <dbl> 1.059, 2.717, 2.878, 2.875, 3.028, 1.932, 1.529, 3.057, 3.047,…
## $ s_40770 <dbl> 0.874, 2.212, 2.441, 2.558, 2.599, 1.874, 1.364, 2.663, 3.093,…
## $ s_40780 <dbl> 0.000, 0.337, 0.419, 0.411, 0.419, 0.002, 0.000, 0.471, 0.471,…
## $ s_40790 <dbl> 0.342, 4.971, 5.431, 5.604, 5.541, 0.948, 0.608, 5.672, 6.013,…
## $ s_40800 <dbl> 0.431, 1.844, 1.954, 2.047, 2.092, 0.936, 0.554, 2.146, 2.257,…
## $ s_40810 <dbl> 0.479, 1.372, 1.628, 1.638, 1.698, 0.965, 0.689, 2.013, 1.826,…
## $ s_40820 <dbl> 0.808, 4.433, 4.769, 5.003, 5.336, 1.929, 1.190, 5.048, 5.338,…
## $ s_40830 <dbl> 0.000, 0.813, 0.881, 0.884, 0.925, 0.002, 0.000, 0.981, 0.979,…
## $ s_40840 <dbl> 0.202, 0.745, 0.842, 0.827, 0.843, 0.431, 0.233, 0.887, 0.875,…
## $ s_40850 <dbl> 0.156, 1.878, 2.095, 2.223, 1.961, 0.598, 0.239, 2.614, 2.563,…
## $ s_40870 <dbl> 0.196, 0.965, 0.986, 1.026, 1.056, 0.425, 0.225, 1.084, 1.123,…
## $ s_40880 <dbl> 0.953, 2.291, 2.476, 2.599, 2.721, 1.790, 1.326, 2.962, 3.104,…
## $ s_40890 <dbl> 6.383, 9.301, 8.584, 8.280, 8.109, 6.109, 6.438, 7.854, 7.518,…
## $ s_40900 <dbl> 2.068, 5.437, 5.814, 5.876, 5.955, 3.828, 2.501, 6.150, 6.324,…
## $ s_40910 <dbl> 1.366, 3.047, 3.350, 3.371, 3.456, 2.437, 1.815, 3.594, 3.768,…
## $ s_40920 <dbl> 0.474, 1.001, 1.060, 1.058, 1.209, 0.845, 0.641, 1.195, 1.232,…
## $ s_40930 <dbl> 2.030, 7.727, 7.448, 7.257, 7.265, 2.536, 1.806, 7.653, 7.692,…
## $ s_40940 <dbl> 0.230, 0.674, 0.681, 0.659, 0.724, 0.439, 0.282, 0.688, 0.682,…
## $ s_40960 <dbl> 0.469, 3.563, 3.922, 3.204, 4.036, 1.183, 0.621, 5.496, 5.345,…
## $ s_40970 <dbl> 0.413, 0.836, 0.949, 0.918, 0.933, 0.730, 0.487, 0.989, 0.986,…
## $ s_40980 <dbl> 0.173, 0.667, 0.727, 0.773, 0.768, 0.379, 0.239, 0.793, 0.756,…
## $ s_40990 <dbl> 2.366, 5.732, 5.977, 6.206, 6.436, 4.497, 3.041, 6.889, 6.899,…
## $ s_41000 <dbl> 1.273, 2.036, 2.114, 2.168, 2.421, 2.167, 1.556, 2.244, 2.331,…
## $ s_41010 <dbl> 0.209, 1.107, 1.186, 1.166, 1.227, 0.523, 0.324, 1.220, 1.302,…
## $ s_41020 <dbl> 0.987, 4.199, 4.366, 4.405, 4.649, 2.204, 1.521, 4.669, 4.828,…
## $ s_41030 <dbl> 0.000, 2.011, 2.217, 2.302, 2.246, 0.008, 0.000, 2.481, 2.436,…
## $ s_41040 <dbl> 0.000, 0.335, 0.380, 0.366, 0.399, 0.000, 0.000, 0.452, 0.463,…
## $ s_41050 <dbl> 0.176, 0.941, 0.993, 1.113, 1.122, 0.406, 0.227, 1.052, 1.094,…
## $ s_41060 <dbl> 0.242, 0.988, 1.091, 1.145, 1.190, 0.543, 0.304, 1.319, 1.314,…
## $ s_41070 <dbl> 0.357, 0.850, 0.943, 0.967, 1.008, 0.607, 0.385, 1.065, 1.204,…
## $ s_41080 <dbl> 0.427, 1.116, 1.216, 1.165, 1.349, 0.754, 0.448, 1.259, 1.224,…
## $ s_41090 <dbl> 0.979, 6.848, 6.922, 7.227, 7.271, 2.410, 1.408, 6.877, 7.537,…
## $ s_41120 <dbl> 0.448, 1.195, 1.357, 1.389, 1.478, 0.765, 0.460, 1.661, 1.701,…
## $ s_41130 <dbl> 0.306, 1.774, 2.029, 2.074, 2.129, 0.689, 0.352, 2.479, 2.556,…
## $ s_41140 <dbl> 0.144, 0.580, 0.627, 0.705, 0.695, 0.403, 0.243, 0.718, 0.690,…
## $ s_41150 <dbl> 0.460, 2.335, 2.588, 2.710, 2.682, 1.142, 0.599, 3.013, 3.020,…
## $ s_41160 <dbl> 0.217, 1.681, 1.733, 1.791, 1.634, 0.395, 0.282, 1.809, 1.901,…
## $ s_41170 <dbl> 1.457, 3.748, 3.977, 4.185, 4.533, 3.341, 1.972, 4.590, 4.511,…
## $ s_41180 <dbl> 0.402, 1.173, 1.403, 1.379, 1.461, 0.883, 0.560, 1.449, 1.417,…
## $ s_41190 <dbl> 0.590, 1.338, 1.345, 1.390, 1.510, 1.072, 0.782, 1.454, 1.496,…
## $ s_41200 <dbl> 0.993, 2.405, 2.569, 2.641, 2.638, 1.805, 1.280, 2.763, 2.847,…
## $ s_41210 <dbl> 0.270, 2.194, 2.449, 2.548, 2.466, 0.759, 0.416, 2.606, 2.639,…
## $ s_41220 <dbl> 1.763, 7.054, 7.519, 7.919, 8.074, 4.535, 3.114, 10.856, 10.85…
## $ s_41230 <dbl> 0.787, 1.902, 1.965, 2.130, 2.182, 1.613, 1.252, 2.370, 2.322,…
## $ s_41240 <dbl> 0.388, 1.998, 2.095, 2.117, 2.106, 0.846, 0.516, 2.500, 2.570,…
## $ s_41250 <dbl> 0.180, 0.842, 0.865, 0.886, 0.847, 0.468, 0.249, 0.963, 0.959,…
## $ s_41260 <dbl> 0.399, 1.621, 1.871, 1.951, 1.985, 0.855, 0.553, 1.983, 2.048,…
## $ s_41270 <dbl> 0.211, 0.640, 0.713, 0.695, 0.724, 0.411, 0.258, 0.821, 0.791,…
## $ s_41280 <dbl> 1.302, 5.812, 6.171, 6.385, 6.334, 2.692, 1.856, 6.595, 6.750,…
## $ s_41290 <dbl> 0.869, 3.335, 3.480, 3.519, 3.730, 2.101, 1.200, 4.059, 4.268,…
## $ s_41300 <dbl> 1.403, 3.508, 3.781, 3.963, 3.967, 2.733, 1.884, 4.306, 4.337,…
## $ s_41310 <dbl> 0.323, 1.795, 2.004, 1.925, 2.067, 0.966, 0.543, 2.028, 2.042,…
## $ s_41320 <dbl> 2.872, 7.703, 8.253, 8.897, 9.639, 6.733, 4.514, 8.922, 9.026,…
## $ s_41330 <dbl> 0.383, 1.637, 1.786, 1.859, 1.819, 0.668, 0.485, 1.836, 1.915,…
## $ s_41340 <dbl> 0.142, 1.866, 2.023, 1.991, 1.888, 0.337, 0.184, 2.254, 2.369,…
## $ s_41350 <dbl> 0.170, 1.272, 1.333, 1.429, 1.375, 0.467, 0.296, 1.419, 1.405,…
## $ s_41360 <dbl> 0.213, 0.619, 0.660, 0.694, 0.805, 0.385, 0.252, 0.756, 0.781,…
## $ s_41380 <dbl> 1.407, 3.983, 4.063, 4.113, 4.189, 2.609, 2.003, 4.444, 4.414,…
## $ s_41400 <dbl> 1.363, 4.775, 5.243, 5.270, 5.184, 3.068, 2.112, 5.809, 5.920,…
## $ s_41410 <dbl> 0.252, 1.706, 1.918, 1.962, 1.997, 0.633, 0.429, 2.071, 2.163,…
## $ s_41420 <dbl> 1.227, 3.937, 4.329, 4.607, 4.666, 2.710, 1.935, 4.785, 4.906,…
## $ s_41430 <dbl> 1.659, 4.577, 4.782, 5.111, 5.266, 3.010, 2.044, 5.464, 5.408,…
## $ s_41440 <dbl> 0.225, 1.512, 1.699, 1.717, 1.736, 0.613, 0.307, 1.868, 1.889,…
## $ s_41450 <dbl> 4.395, 11.058, 11.680, 11.883, 12.771, 8.718, 5.822, 11.698, 1…
## $ s_41460 <dbl> 0.327, 2.040, 2.124, 2.246, 2.362, 0.962, 0.541, 2.402, 2.417,…
## $ s_41480 <dbl> 0.715, 3.194, 3.272, 3.398, 3.346, 1.656, 1.006, 3.609, 3.528,…
## $ s_41490 <dbl> 0.502, 2.390, 2.495, 2.531, 2.202, 1.214, 0.822, 2.903, 2.932,…
## $ s_41500 <dbl> 0.338, 1.710, 1.888, 1.905, 2.049, 0.877, 0.531, 2.001, 2.008,…
## $ s_41510 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ s_41580 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ s_41660 <dbl> 2.942, 12.087, 12.622, 12.936, 13.043, 5.444, 3.579, 13.170, 1…
## $ s_41670 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ s_41680 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ s_41690 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
Skim only_rides
::skim(only_rides) skimr
Name | only_rides |
Number of rows | 5733 |
Number of columns | 146 |
_______________________ | |
Column type frequency: | |
numeric | 146 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
s_40010 | 0 | 1.00 | 1.52 | 0.57 | 0.19 | 0.96 | 1.66 | 1.99 | 2.73 | ▂▅▅▇▂ |
s_40020 | 0 | 1.00 | 3.08 | 0.98 | 0.07 | 2.34 | 3.38 | 3.81 | 5.98 | ▂▅▇▇▁ |
s_40030 | 0 | 1.00 | 1.45 | 0.46 | 0.40 | 1.11 | 1.47 | 1.81 | 2.59 | ▂▅▇▆▁ |
s_40040 | 0 | 1.00 | 5.59 | 2.92 | 0.00 | 1.85 | 7.02 | 7.79 | 9.82 | ▅▁▁▇▅ |
s_40050 | 0 | 1.00 | 3.33 | 0.81 | 0.00 | 2.90 | 3.63 | 3.87 | 4.88 | ▁▂▂▇▃ |
s_40060 | 0 | 1.00 | 4.09 | 1.26 | 0.71 | 2.91 | 4.47 | 4.94 | 6.42 | ▁▃▂▇▃ |
s_40070 | 0 | 1.00 | 6.03 | 2.61 | 0.00 | 3.33 | 7.03 | 7.89 | 18.41 | ▅▆▇▁▁ |
s_40080 | 0 | 1.00 | 4.38 | 1.16 | 0.62 | 3.62 | 4.63 | 5.21 | 10.59 | ▂▆▇▁▁ |
s_40090 | 0 | 1.00 | 1.74 | 0.80 | 0.00 | 1.12 | 1.92 | 2.33 | 3.41 | ▃▅▇▇▂ |
s_40100 | 0 | 1.00 | 3.80 | 0.94 | 0.00 | 3.21 | 3.99 | 4.44 | 5.80 | ▁▁▃▇▂ |
s_40120 | 0 | 1.00 | 2.21 | 0.87 | 0.20 | 1.41 | 2.44 | 2.88 | 4.86 | ▃▂▇▃▁ |
s_40130 | 0 | 1.00 | 0.96 | 0.30 | 0.00 | 0.72 | 1.05 | 1.15 | 3.01 | ▂▇▂▁▁ |
s_40140 | 0 | 1.00 | 1.80 | 1.00 | 0.00 | 1.00 | 2.21 | 2.52 | 4.08 | ▅▂▇▆▁ |
s_40150 | 0 | 1.00 | 0.76 | 0.41 | 0.00 | 0.44 | 0.75 | 1.14 | 1.75 | ▅▇▆▇▁ |
s_40160 | 0 | 1.00 | 2.24 | 1.27 | 0.00 | 0.52 | 2.95 | 3.17 | 5.01 | ▆▁▅▇▁ |
s_40170 | 0 | 1.00 | 1.79 | 0.84 | 0.00 | 1.19 | 1.68 | 2.46 | 8.35 | ▇▇▁▁▁ |
s_40180 | 0 | 1.00 | 1.32 | 0.56 | 0.08 | 0.73 | 1.51 | 1.77 | 2.51 | ▃▂▃▇▁ |
s_40190 | 30 | 0.99 | 3.93 | 1.85 | 0.00 | 2.81 | 3.69 | 4.76 | 13.83 | ▃▇▂▁▁ |
s_40200 | 0 | 1.00 | 5.73 | 2.39 | 0.00 | 3.93 | 6.01 | 7.33 | 13.51 | ▂▃▇▁▁ |
s_40210 | 0 | 1.00 | 0.91 | 0.48 | 0.00 | 0.57 | 0.88 | 1.32 | 1.95 | ▅▇▆▇▂ |
s_40220 | 0 | 1.00 | 1.19 | 0.42 | 0.00 | 0.90 | 1.10 | 1.55 | 2.58 | ▁▇▇▅▁ |
s_40230 | 0 | 1.00 | 4.05 | 1.44 | 0.00 | 2.85 | 4.59 | 5.03 | 9.47 | ▂▂▇▁▁ |
s_40240 | 30 | 0.99 | 6.55 | 1.84 | 0.00 | 5.26 | 7.30 | 7.85 | 11.82 | ▁▂▃▇▁ |
s_40250 | 0 | 1.00 | 1.62 | 0.53 | 0.45 | 1.28 | 1.61 | 2.01 | 3.03 | ▃▅▇▅▁ |
s_40260 | 0 | 1.00 | 7.63 | 2.60 | 0.00 | 5.69 | 8.24 | 9.61 | 14.15 | ▁▃▆▇▁ |
s_40270 | 0 | 1.00 | 1.03 | 0.28 | 0.00 | 0.85 | 1.16 | 1.23 | 1.92 | ▁▃▃▇▁ |
s_40280 | 0 | 1.00 | 1.99 | 0.56 | 0.01 | 1.49 | 2.21 | 2.40 | 3.89 | ▁▆▇▇▁ |
s_40290 | 0 | 1.00 | 1.44 | 0.51 | 0.00 | 1.00 | 1.54 | 1.75 | 3.96 | ▂▇▇▁▁ |
s_40300 | 0 | 1.00 | 0.69 | 0.28 | 0.00 | 0.47 | 0.68 | 0.91 | 2.38 | ▃▇▂▁▁ |
s_40310 | 0 | 1.00 | 2.87 | 1.12 | 0.28 | 1.77 | 3.27 | 3.60 | 5.74 | ▃▃▇▅▁ |
s_40320 | 0 | 1.00 | 4.33 | 1.62 | 0.00 | 3.00 | 4.56 | 5.46 | 9.36 | ▂▃▇▃▁ |
s_40330 | 0 | 1.00 | 9.37 | 2.49 | 0.00 | 8.21 | 9.32 | 10.76 | 24.73 | ▁▇▅▁▁ |
s_40340 | 0 | 1.00 | 2.98 | 0.70 | 0.00 | 2.55 | 3.25 | 3.47 | 4.29 | ▁▁▃▇▆ |
s_40350 | 0 | 1.00 | 4.04 | 2.34 | 0.26 | 1.87 | 3.59 | 6.22 | 9.64 | ▇▇▃▇▁ |
s_40360 | 0 | 1.00 | 2.33 | 1.02 | 0.00 | 1.56 | 2.67 | 3.07 | 4.56 | ▂▃▅▇▁ |
s_40370 | 0 | 1.00 | 7.47 | 3.26 | 0.00 | 4.58 | 8.32 | 9.71 | 16.11 | ▃▂▇▅▁ |
s_40380 | 0 | 1.00 | 13.61 | 6.57 | 0.60 | 6.17 | 15.89 | 18.93 | 26.06 | ▅▂▃▇▁ |
s_40390 | 0 | 1.00 | 3.12 | 1.13 | 0.33 | 1.90 | 3.69 | 3.94 | 7.35 | ▂▂▇▁▁ |
s_40400 | 0 | 1.00 | 0.60 | 0.22 | 0.00 | 0.46 | 0.63 | 0.75 | 1.69 | ▃▇▇▁▁ |
s_40420 | 0 | 1.00 | 0.92 | 0.39 | 0.00 | 0.71 | 0.96 | 1.21 | 2.32 | ▂▆▇▂▁ |
s_40430 | 0 | 1.00 | 2.44 | 1.04 | 0.00 | 1.43 | 2.68 | 3.15 | 4.56 | ▃▅▆▇▃ |
s_40440 | 0 | 1.00 | 0.93 | 0.50 | 0.00 | 0.58 | 0.91 | 1.32 | 9.70 | ▇▁▁▁▁ |
s_40450 | 30 | 0.99 | 10.87 | 3.65 | 0.00 | 7.67 | 12.18 | 13.77 | 18.90 | ▁▃▂▇▁ |
s_40460 | 0 | 1.00 | 4.68 | 2.54 | 0.00 | 1.78 | 5.60 | 6.45 | 12.10 | ▅▁▇▂▁ |
s_40470 | 0 | 1.00 | 1.83 | 0.78 | 0.14 | 1.10 | 1.99 | 2.51 | 5.81 | ▆▇▇▁▁ |
s_40480 | 0 | 1.00 | 1.21 | 0.34 | 0.35 | 0.95 | 1.31 | 1.47 | 2.28 | ▂▃▇▃▁ |
s_40490 | 0 | 1.00 | 1.56 | 0.72 | 0.00 | 1.12 | 1.50 | 2.06 | 8.83 | ▇▅▁▁▁ |
s_40500 | 2780 | 0.52 | 4.85 | 3.81 | 0.00 | 0.00 | 5.95 | 7.98 | 12.44 | ▇▃▃▆▂ |
s_40510 | 0 | 1.00 | 1.44 | 2.01 | 0.19 | 0.82 | 1.20 | 1.44 | 17.30 | ▇▁▁▁▁ |
s_40520 | 0 | 1.00 | 0.66 | 0.23 | 0.00 | 0.49 | 0.70 | 0.83 | 1.48 | ▂▃▇▂▁ |
s_40530 | 0 | 1.00 | 3.96 | 1.67 | 0.00 | 2.62 | 4.46 | 5.24 | 8.97 | ▂▃▇▃▁ |
s_40540 | 0 | 1.00 | 4.89 | 1.50 | 1.10 | 3.70 | 5.14 | 5.93 | 11.57 | ▃▇▇▁▁ |
s_40550 | 0 | 1.00 | 3.41 | 1.13 | 0.00 | 2.26 | 3.84 | 4.25 | 5.48 | ▁▃▂▇▃ |
s_40560 | 0 | 1.00 | 8.97 | 3.84 | 0.00 | 5.22 | 10.09 | 11.90 | 23.94 | ▃▃▇▁▁ |
s_40570 | 0 | 1.00 | 3.25 | 1.28 | 0.00 | 2.45 | 3.22 | 4.16 | 6.29 | ▂▃▇▅▂ |
s_40580 | 0 | 1.00 | 1.52 | 0.67 | 0.00 | 1.10 | 1.67 | 2.03 | 3.88 | ▂▅▇▁▁ |
s_40590 | 0 | 1.00 | 4.55 | 1.68 | 0.00 | 3.82 | 4.56 | 5.61 | 16.88 | ▂▇▁▁▁ |
s_40600 | 0 | 1.00 | 0.33 | 0.16 | 0.00 | 0.22 | 0.32 | 0.44 | 0.70 | ▃▇▇▆▂ |
s_40610 | 0 | 1.00 | 1.07 | 0.45 | 0.01 | 0.56 | 1.31 | 1.39 | 2.35 | ▃▂▇▃▁ |
s_40630 | 0 | 1.00 | 6.51 | 1.46 | 0.00 | 5.88 | 6.85 | 7.45 | 12.06 | ▁▂▇▅▁ |
s_40640 | 0 | 1.00 | 4.08 | 2.28 | 0.00 | 2.20 | 4.37 | 5.88 | 12.52 | ▆▇▇▁▁ |
s_40650 | 0 | 1.00 | 4.33 | 1.23 | 0.00 | 3.67 | 4.17 | 5.20 | 7.92 | ▁▂▇▃▁ |
s_40660 | 0 | 1.00 | 3.14 | 1.23 | 0.01 | 2.14 | 3.53 | 4.04 | 5.25 | ▂▃▂▇▃ |
s_40670 | 0 | 1.00 | 3.58 | 1.48 | 0.02 | 2.43 | 3.72 | 4.56 | 16.36 | ▆▇▁▁▁ |
s_40680 | 0 | 1.00 | 6.23 | 2.65 | 0.00 | 3.86 | 6.98 | 7.89 | 21.62 | ▃▇▂▁▁ |
s_40690 | 0 | 1.00 | 0.71 | 0.17 | 0.00 | 0.62 | 0.74 | 0.82 | 1.87 | ▁▇▇▁▁ |
s_40700 | 0 | 1.00 | 1.17 | 0.35 | 0.31 | 0.89 | 1.28 | 1.42 | 4.15 | ▃▇▁▁▁ |
s_40710 | 0 | 1.00 | 4.32 | 2.05 | 0.03 | 2.64 | 4.24 | 5.96 | 11.31 | ▅▇▆▃▁ |
s_40720 | 0 | 1.00 | 1.14 | 0.37 | 0.22 | 0.81 | 1.25 | 1.38 | 2.59 | ▂▃▇▁▁ |
s_40730 | 0 | 1.00 | 5.26 | 2.94 | 0.00 | 1.31 | 6.78 | 7.36 | 11.09 | ▅▁▂▇▁ |
s_40740 | 0 | 1.00 | 0.76 | 0.36 | 0.00 | 0.54 | 0.75 | 1.08 | 2.04 | ▂▇▇▂▁ |
s_40750 | 0 | 1.00 | 2.32 | 0.88 | 0.00 | 1.39 | 2.72 | 2.95 | 5.06 | ▂▃▇▃▁ |
s_40760 | 0 | 1.00 | 3.28 | 0.84 | 0.00 | 2.83 | 3.38 | 3.79 | 6.16 | ▁▂▇▅▁ |
s_40770 | 0 | 1.00 | 2.77 | 0.73 | 0.00 | 2.37 | 2.86 | 3.27 | 5.32 | ▁▃▇▅▁ |
s_40780 | 0 | 1.00 | 0.74 | 0.43 | 0.00 | 0.42 | 0.73 | 1.11 | 1.64 | ▆▇▆▇▃ |
s_40790 | 0 | 1.00 | 4.85 | 2.37 | 0.00 | 2.20 | 5.69 | 6.33 | 12.30 | ▅▁▇▂▁ |
s_40800 | 0 | 1.00 | 2.80 | 1.04 | 0.00 | 2.19 | 2.85 | 3.66 | 8.92 | ▃▇▃▁▁ |
s_40810 | 0 | 1.00 | 2.28 | 1.11 | 0.32 | 1.17 | 2.31 | 3.11 | 5.09 | ▇▅▇▅▂ |
s_40820 | 0 | 1.00 | 4.51 | 1.66 | 0.13 | 3.39 | 4.82 | 5.53 | 15.68 | ▃▇▁▁▁ |
s_40830 | 0 | 1.00 | 1.22 | 0.56 | 0.00 | 0.93 | 1.16 | 1.67 | 3.59 | ▂▇▆▁▁ |
s_40840 | 0 | 1.00 | 0.66 | 0.23 | 0.00 | 0.44 | 0.77 | 0.82 | 1.16 | ▁▃▁▇▁ |
s_40850 | 0 | 1.00 | 2.87 | 1.40 | 0.00 | 1.88 | 2.73 | 4.02 | 12.90 | ▇▇▁▁▁ |
s_40870 | 0 | 1.00 | 1.04 | 0.45 | 0.00 | 0.67 | 1.11 | 1.42 | 1.83 | ▂▅▆▇▆ |
s_40880 | 0 | 1.00 | 2.51 | 0.69 | 0.00 | 1.98 | 2.73 | 2.99 | 5.39 | ▁▃▇▁▁ |
s_40890 | 0 | 1.00 | 8.93 | 1.88 | 0.00 | 7.70 | 8.80 | 10.01 | 18.55 | ▁▂▇▁▁ |
s_40900 | 0 | 1.00 | 5.41 | 1.29 | 1.38 | 4.44 | 5.91 | 6.28 | 8.58 | ▁▂▂▇▁ |
s_40910 | 30 | 0.99 | 2.93 | 0.82 | 0.00 | 2.37 | 3.14 | 3.53 | 9.55 | ▁▇▁▁▁ |
s_40920 | 0 | 1.00 | 1.40 | 0.39 | 0.44 | 1.18 | 1.35 | 1.73 | 2.40 | ▂▅▇▅▁ |
s_40930 | 0 | 1.00 | 7.32 | 2.40 | 1.19 | 5.03 | 8.20 | 9.05 | 14.97 | ▂▂▇▂▁ |
s_40940 | 0 | 1.00 | 0.70 | 0.33 | 0.00 | 0.48 | 0.69 | 0.83 | 2.90 | ▅▇▁▁▁ |
s_40960 | 0 | 1.00 | 4.08 | 1.70 | 0.29 | 2.23 | 4.89 | 5.40 | 9.31 | ▃▂▇▁▁ |
s_40970 | 0 | 1.00 | 1.08 | 0.30 | 0.25 | 0.86 | 1.07 | 1.31 | 1.83 | ▁▅▇▆▂ |
s_40980 | 0 | 1.00 | 0.83 | 0.29 | 0.03 | 0.60 | 0.87 | 1.05 | 1.58 | ▁▅▇▇▁ |
s_40990 | 30 | 0.99 | 5.12 | 1.45 | 0.00 | 4.19 | 5.60 | 6.14 | 8.74 | ▁▂▃▇▁ |
s_41000 | 30 | 0.99 | 3.48 | 1.00 | 0.00 | 2.95 | 3.51 | 4.08 | 11.70 | ▁▇▁▁▁ |
s_41010 | 0 | 1.00 | 1.26 | 0.53 | 0.00 | 0.79 | 1.38 | 1.68 | 2.20 | ▂▃▃▇▃ |
s_41020 | 0 | 1.00 | 4.87 | 1.74 | 0.76 | 3.60 | 4.90 | 6.10 | 13.15 | ▃▇▅▁▁ |
s_41030 | 0 | 1.00 | 2.32 | 1.27 | 0.00 | 0.88 | 2.87 | 3.34 | 4.51 | ▅▁▂▇▂ |
s_41040 | 0 | 1.00 | 0.64 | 0.37 | 0.00 | 0.37 | 0.62 | 0.95 | 2.44 | ▇▇▅▁▁ |
s_41050 | 0 | 1.00 | 0.90 | 0.35 | 0.00 | 0.75 | 0.93 | 1.08 | 2.35 | ▃▇▇▂▁ |
s_41060 | 0 | 1.00 | 1.25 | 0.42 | 0.15 | 0.86 | 1.39 | 1.57 | 2.28 | ▂▃▅▇▁ |
s_41070 | 0 | 1.00 | 1.17 | 0.38 | 0.32 | 0.86 | 1.23 | 1.44 | 2.28 | ▃▃▇▃▁ |
s_41080 | 0 | 1.00 | 1.13 | 0.37 | 0.00 | 0.88 | 1.20 | 1.35 | 2.80 | ▁▅▇▁▁ |
s_41090 | 0 | 1.00 | 7.17 | 3.15 | 0.00 | 4.68 | 7.24 | 9.74 | 17.70 | ▃▆▇▂▁ |
s_41120 | 0 | 1.00 | 1.88 | 0.87 | 0.14 | 1.31 | 1.92 | 2.27 | 8.53 | ▆▇▁▁▁ |
s_41130 | 0 | 1.00 | 2.10 | 0.84 | 0.16 | 1.25 | 2.42 | 2.69 | 6.76 | ▅▇▂▁▁ |
s_41140 | 0 | 1.00 | 0.57 | 0.18 | 0.08 | 0.43 | 0.61 | 0.69 | 1.34 | ▂▅▇▁▁ |
s_41150 | 0 | 1.00 | 2.52 | 0.91 | 0.26 | 1.61 | 2.91 | 3.19 | 4.93 | ▃▃▇▇▁ |
s_41160 | 0 | 1.00 | 2.63 | 1.51 | 0.10 | 1.38 | 2.29 | 4.24 | 5.44 | ▆▇▂▇▅ |
s_41170 | 30 | 0.99 | 3.45 | 0.98 | 0.00 | 2.90 | 3.77 | 4.13 | 5.99 | ▁▂▃▇▁ |
s_41180 | 0 | 1.00 | 1.56 | 0.63 | 0.00 | 1.23 | 1.60 | 1.90 | 5.46 | ▂▇▁▁▁ |
s_41190 | 0 | 1.00 | 1.33 | 0.31 | 0.00 | 1.17 | 1.40 | 1.53 | 2.15 | ▁▁▃▇▁ |
s_41200 | 0 | 1.00 | 2.46 | 0.60 | 0.00 | 2.12 | 2.57 | 2.79 | 4.70 | ▁▂▇▃▁ |
s_41210 | 0 | 1.00 | 2.04 | 1.11 | 0.00 | 1.03 | 2.43 | 2.81 | 10.48 | ▅▇▁▁▁ |
s_41220 | 0 | 1.00 | 10.23 | 3.39 | 0.70 | 7.99 | 10.42 | 12.60 | 18.06 | ▁▅▇▆▂ |
s_41230 | 30 | 0.99 | 2.63 | 0.78 | 0.00 | 2.10 | 2.87 | 3.20 | 7.39 | ▂▇▇▁▁ |
s_41240 | 0 | 1.00 | 2.17 | 0.83 | 0.00 | 1.35 | 2.48 | 2.77 | 3.85 | ▁▃▂▇▁ |
s_41250 | 0 | 1.00 | 0.75 | 0.37 | 0.00 | 0.44 | 0.84 | 0.91 | 5.50 | ▇▁▁▁▁ |
s_41260 | 0 | 1.00 | 1.67 | 0.55 | 0.02 | 1.15 | 1.93 | 2.08 | 3.24 | ▁▅▅▇▁ |
s_41270 | 0 | 1.00 | 0.83 | 0.30 | 0.00 | 0.58 | 0.88 | 1.04 | 1.94 | ▂▃▇▁▁ |
s_41280 | 0 | 1.00 | 5.39 | 1.83 | 0.26 | 3.44 | 6.24 | 6.73 | 11.33 | ▂▃▇▂▁ |
s_41290 | 0 | 1.00 | 3.25 | 1.11 | 0.00 | 2.44 | 3.66 | 4.08 | 5.62 | ▁▂▂▇▁ |
s_41300 | 0 | 1.00 | 4.58 | 1.22 | 0.88 | 3.82 | 4.73 | 5.46 | 8.15 | ▁▃▇▅▁ |
s_41310 | 0 | 1.00 | 1.94 | 0.88 | 0.00 | 1.26 | 2.12 | 2.55 | 4.53 | ▂▃▇▃▁ |
s_41320 | 0 | 1.00 | 10.41 | 2.50 | 1.24 | 9.15 | 10.39 | 12.23 | 36.32 | ▂▇▁▁▁ |
s_41330 | 0 | 1.00 | 1.71 | 0.67 | 0.00 | 1.06 | 1.91 | 2.14 | 3.09 | ▁▃▂▇▂ |
s_41340 | 0 | 1.00 | 2.13 | 1.00 | 0.00 | 1.16 | 2.37 | 2.93 | 5.08 | ▃▂▇▃▁ |
s_41350 | 0 | 1.00 | 1.29 | 0.44 | 0.02 | 0.90 | 1.45 | 1.62 | 2.67 | ▂▅▇▅▁ |
s_41360 | 0 | 1.00 | 0.86 | 0.29 | 0.19 | 0.61 | 0.89 | 1.11 | 1.50 | ▃▃▆▇▁ |
s_41380 | 0 | 1.00 | 4.06 | 0.99 | 0.00 | 3.30 | 4.40 | 4.77 | 6.59 | ▁▂▂▇▁ |
s_41400 | 0 | 1.00 | 8.29 | 2.69 | 1.24 | 6.29 | 8.11 | 10.51 | 21.73 | ▂▇▆▁▁ |
s_41410 | 0 | 1.00 | 2.74 | 1.20 | 0.00 | 1.86 | 2.69 | 3.70 | 5.09 | ▂▃▇▅▅ |
s_41420 | 0 | 1.00 | 7.27 | 3.59 | 0.13 | 5.17 | 6.11 | 7.83 | 21.33 | ▂▇▂▁▁ |
s_41430 | 30 | 0.99 | 4.21 | 1.28 | 0.00 | 3.34 | 4.71 | 5.15 | 9.67 | ▁▃▇▁▁ |
s_41440 | 0 | 1.00 | 1.71 | 0.86 | 0.00 | 0.97 | 1.86 | 2.36 | 4.38 | ▃▃▇▂▁ |
s_41450 | 0 | 1.00 | 12.91 | 3.01 | 0.00 | 11.68 | 13.44 | 14.83 | 25.28 | ▁▂▇▂▁ |
s_41460 | 0 | 1.00 | 2.06 | 0.98 | 0.00 | 1.24 | 2.28 | 2.88 | 6.14 | ▅▇▇▁▁ |
s_41480 | 0 | 1.00 | 3.19 | 0.96 | 0.39 | 2.61 | 3.35 | 3.94 | 7.25 | ▂▃▇▁▁ |
s_41490 | 0 | 1.00 | 3.09 | 1.24 | 0.00 | 2.14 | 3.03 | 3.99 | 7.89 | ▂▇▆▂▁ |
s_41500 | 0 | 1.00 | 1.90 | 0.85 | 0.00 | 1.23 | 2.07 | 2.58 | 4.04 | ▂▃▇▆▁ |
s_41510 | 4138 | 0.28 | 1.89 | 0.73 | 0.00 | 1.29 | 1.98 | 2.44 | 4.28 | ▂▆▇▃▁ |
s_41580 | 5702 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | ▇▁▁▁▁ |
s_41660 | 0 | 1.00 | 13.20 | 5.50 | 0.00 | 8.78 | 13.61 | 17.28 | 28.46 | ▂▅▇▅▁ |
s_41670 | 151 | 0.97 | 0.70 | 0.25 | 0.00 | 0.53 | 0.71 | 0.91 | 1.84 | ▂▇▇▁▁ |
s_41680 | 4108 | 0.28 | 0.67 | 0.36 | 0.00 | 0.38 | 0.82 | 0.96 | 1.26 | ▃▅▂▇▃ |
s_41690 | 5113 | 0.11 | 1.12 | 0.47 | 0.00 | 0.86 | 1.19 | 1.39 | 3.55 | ▂▇▂▁▁ |
Select stations with missing values only
%>%
only_rides select_if(~any(is.na(.))) %>%
plot_missing()
MCAR test
mcar_test(only_rides)
## Warning in norm::prelim.norm(data): NAs introduced by coercion to integer range
## # A tibble: 1 × 4
## statistic df p.value missing.patterns
## <dbl> <dbl> <dbl> <int>
## 1 18032. 842 0 7
Plot pattern of missingness using an upset plot
gg_miss_upset(only_rides, nsets = 10)
Stations 40500 (Washington), 41680 (Oakton-Skokie), 41510 (Morgan), 41690 (Cermak-McCormick Place) and 41580 (Homan) missing values are highly related.