8.7 Missing Values for the Chicago ridership data

Chicago ridership raw entries

only_rides <- 
     raw_entries %>% 
     select(-date)

only_rides %>% 
     glimpse()
## Rows: 5,733
## Columns: 146
## $ s_40010 <dbl> 0.290, 1.240, 1.412, 1.388, 1.465, 0.613, 0.403, 1.463, 1.505,…
## $ s_40020 <dbl> 0.633, 2.950, 3.107, 3.259, 3.357, 1.569, 0.887, 3.222, 3.281,…
## $ s_40030 <dbl> 0.483, 1.230, 1.394, 1.370, 1.453, 0.839, 0.589, 1.500, 1.547,…
## $ s_40040 <dbl> 0.374, 7.737, 8.051, 8.027, 7.653, 0.844, 0.464, 8.371, 8.351,…
## $ s_40050 <dbl> 0.804, 3.199, 3.476, 3.540, 3.684, 2.467, 1.367, 3.544, 3.612,…
## $ s_40060 <dbl> 1.165, 4.046, 4.153, 4.362, 4.400, 2.231, 1.565, 4.599, 4.725,…
## $ s_40070 <dbl> 0.649, 5.777, 6.482, 6.766, 6.308, 1.798, 1.055, 7.341, 7.537,…
## $ s_40080 <dbl> 1.116, 3.854, 4.147, 4.202, 4.404, 2.545, 1.823, 4.527, 4.514,…
## $ s_40090 <dbl> 0.411, 1.823, 1.905, 2.008, 2.088, 1.024, 0.561, 2.095, 2.185,…
## $ s_40100 <dbl> 1.698, 3.807, 4.047, 4.107, 4.381, 3.021, 2.187, 4.411, 4.399,…
## $ s_40120 <dbl> 0.318, 1.654, 1.777, 1.878, 1.825, 0.650, 0.380, 2.009, 2.088,…
## $ s_40130 <dbl> 0.364, 0.913, 1.071, 0.994, 1.068, 0.599, 0.409, 1.174, 1.066,…
## $ s_40140 <dbl> 0.000, 2.107, 2.363, 2.379, 2.334, 0.000, 0.000, 2.522, 2.572,…
## $ s_40150 <dbl> 0.000, 0.398, 0.397, 0.456, 0.450, 0.004, 0.000, 0.461, 0.483,…
## $ s_40160 <dbl> 0.096, 3.508, 3.809, 3.820, 3.547, 0.310, 0.154, 3.780, 3.902,…
## $ s_40170 <dbl> 0.246, 1.142, 1.235, 1.343, 1.216, 0.558, 0.339, 1.460, 1.541,…
## $ s_40180 <dbl> 0.157, 1.156, 1.282, 1.357, 1.298, 0.358, 0.205, 1.421, 1.429,…
## $ s_40190 <dbl> 1.131, 2.661, 2.843, 3.023, 3.184, 1.977, 1.515, 3.420, 3.499,…
## $ s_40200 <dbl> 0.834, 5.194, 5.472, 5.503, 5.529, 1.885, 0.923, 5.616, 5.629,…
## $ s_40210 <dbl> 0.000, 0.566, 0.613, 0.629, 0.627, 0.001, 0.000, 0.666, 0.643,…
## $ s_40220 <dbl> 0.318, 0.702, 0.812, 0.774, 0.860, 0.654, 0.414, 0.945, 0.947,…
## $ s_40230 <dbl> 0.788, 4.110, 4.436, 4.541, 4.461, 1.520, 1.028, 4.885, 4.947,…
## $ s_40240 <dbl> 2.470, 6.075, 6.694, 7.097, 7.437, 4.715, 3.316, 7.496, 7.586,…
## $ s_40250 <dbl> 0.448, 1.074, 1.084, 1.106, 1.232, 0.868, 0.586, 1.280, 1.276,…
## $ s_40260 <dbl> 2.059, 7.286, 7.781, 7.808, 7.954, 3.662, 2.483, 8.082, 8.063,…
## $ s_40270 <dbl> 0.279, 1.104, 1.139, 1.203, 1.187, 0.688, 0.352, 1.208, 1.246,…
## $ s_40280 <dbl> 0.700, 1.835, 1.763, 2.076, 2.099, 1.208, 0.856, 2.240, 2.335,…
## $ s_40290 <dbl> 0.540, 1.523, 1.592, 1.698, 1.720, 0.862, 0.632, 1.810, 1.825,…
## $ s_40300 <dbl> 0.199, 0.456, 0.514, 0.474, 0.551, 0.279, 0.242, 0.573, 0.596,…
## $ s_40310 <dbl> 0.460, 2.627, 2.846, 3.086, 3.073, 0.994, 0.614, 3.319, 3.344,…
## $ s_40320 <dbl> 0.854, 3.650, 4.029, 4.158, 4.139, 1.933, 1.290, 4.370, 4.476,…
## $ s_40330 <dbl> 2.542, 7.790, 8.301, 8.543, 8.871, 5.234, 3.823, 8.221, 8.358,…
## $ s_40340 <dbl> 1.046, 2.891, 3.114, 3.176, 3.295, 1.979, 1.502, 3.298, 3.385,…
## $ s_40350 <dbl> 0.273, 1.775, 1.945, 2.049, 2.145, 0.729, 0.485, 4.663, 4.676,…
## $ s_40360 <dbl> 0.417, 2.409, 2.635, 2.672, 2.795, 0.964, 0.545, 2.691, 2.704,…
## $ s_40370 <dbl> 1.039, 7.757, 8.257, 8.303, 8.482, 2.143, 1.399, 8.397, 8.452,…
## $ s_40380 <dbl> 1.080, 13.263, 14.416, 15.118, 14.980, 2.267, 1.405, 15.561, 1…
## $ s_40390 <dbl> 0.660, 2.971, 3.241, 3.260, 3.395, 1.199, 0.752, 3.597, 3.672,…
## $ s_40400 <dbl> 0.072, 0.389, 0.459, 0.482, 0.534, 0.336, 0.180, 0.549, 0.553,…
## $ s_40420 <dbl> 0.000, 0.754, 0.791, 0.820, 0.892, 0.003, 0.000, 0.845, 0.836,…
## $ s_40430 <dbl> 0.546, 2.329, 2.409, 2.398, 2.389, 0.804, 0.676, 2.403, 2.402,…
## $ s_40440 <dbl> 0.000, 0.588, 0.677, 0.728, 0.723, 0.001, 0.000, 0.805, 0.821,…
## $ s_40450 <dbl> 3.948, 11.692, 12.824, 13.091, 13.263, 7.284, 5.134, 14.409, 1…
## $ s_40460 <dbl> 0.185, 5.350, 5.766, 5.824, 5.554, 0.775, 0.231, 6.481, 6.477,…
## $ s_40470 <dbl> 0.286, 1.142, 1.388, 1.574, 1.510, 0.765, 0.393, 2.528, 2.532,…
## $ s_40480 <dbl> 0.405, 1.019, 1.145, 1.222, 1.157, 0.709, 0.486, 1.321, 1.366,…
## $ s_40490 <dbl> 0.182, 1.003, 1.073, 1.106, 1.129, 0.533, 0.313, 1.132, 1.134,…
## $ s_40500 <dbl> 1.181, 6.507, 6.783, 6.906, 6.802, 2.582, 1.498, 6.909, 7.123,…
## $ s_40510 <dbl> 0.248, 0.617, 0.657, 0.697, 0.770, 0.443, 0.295, 0.695, 0.696,…
## $ s_40520 <dbl> 0.126, 0.546, 0.641, 0.720, 0.683, 0.416, 0.223, 0.708, 0.736,…
## $ s_40530 <dbl> 0.670, 3.858, 4.124, 4.151, 4.288, 1.825, 0.925, 4.380, 4.441,…
## $ s_40540 <dbl> 1.449, 3.519, 4.211, 4.132, 4.144, 2.780, 1.913, 4.603, 4.519,…
## $ s_40550 <dbl> 0.731, 3.444, 3.519, 3.591, 3.624, 1.582, 1.200, 3.744, 3.853,…
## $ s_40560 <dbl> 1.255, 8.712, 9.608, 9.735, 9.586, 3.411, 1.909, 12.197, 12.00…
## $ s_40570 <dbl> 0.666, 2.508, 2.617, 2.723, 2.661, 1.355, 0.884, 2.887, 2.863,…
## $ s_40580 <dbl> 0.000, 1.404, 1.466, 1.530, 1.554, 0.004, 0.000, 1.546, 1.495,…
## $ s_40590 <dbl> 0.870, 3.624, 3.793, 3.944, 4.020, 1.735, 1.229, 4.098, 4.180,…
## $ s_40600 <dbl> 0.000, 0.218, 0.269, 0.275, 0.253, 0.001, 0.000, 0.332, 0.337,…
## $ s_40610 <dbl> 0.141, 1.036, 1.222, 1.217, 1.201, 0.372, 0.195, 1.235, 1.303,…
## $ s_40630 <dbl> 2.314, 5.657, 6.012, 6.239, 6.405, 4.631, 3.355, 6.425, 6.630,…
## $ s_40640 <dbl> 0.368, 3.294, 3.523, 3.530, 3.767, 1.093, 0.342, 3.604, 3.832,…
## $ s_40650 <dbl> 1.156, 3.093, 3.263, 3.345, 3.491, 2.621, 1.802, 3.572, 3.605,…
## $ s_40660 <dbl> 0.355, 2.537, 2.831, 2.938, 2.846, 1.090, 0.499, 3.517, 3.566,…
## $ s_40670 <dbl> 0.621, 2.504, 2.601, 2.837, 2.740, 1.270, 0.812, 2.848, 2.959,…
## $ s_40680 <dbl> 0.700, 5.750, 6.149, 6.461, 6.311, 1.979, 0.943, 7.055, 7.619,…
## $ s_40690 <dbl> 0.177, 0.561, 0.628, 0.617, 0.679, 0.420, 0.269, 0.622, 0.612,…
## $ s_40700 <dbl> 0.346, 1.091, 1.128, 1.189, 1.223, 0.657, 0.378, 1.312, 1.416,…
## $ s_40710 <dbl> 0.384, 3.485, 3.797, 3.826, 3.806, 1.225, 0.554, 4.172, 4.248,…
## $ s_40720 <dbl> 0.391, 1.216, 1.316, 1.358, 1.387, 0.675, 0.474, 1.433, 1.399,…
## $ s_40730 <dbl> 0.259, 6.788, 7.321, 7.350, 6.983, 0.662, 0.307, 7.560, 7.576,…
## $ s_40740 <dbl> 0.000, 0.418, 0.457, 0.478, 0.505, 0.002, 0.000, 0.533, 0.505,…
## $ s_40750 <dbl> 0.469, 2.299, 2.443, 2.579, 2.542, 1.012, 0.625, 2.655, 2.760,…
## $ s_40760 <dbl> 1.059, 2.717, 2.878, 2.875, 3.028, 1.932, 1.529, 3.057, 3.047,…
## $ s_40770 <dbl> 0.874, 2.212, 2.441, 2.558, 2.599, 1.874, 1.364, 2.663, 3.093,…
## $ s_40780 <dbl> 0.000, 0.337, 0.419, 0.411, 0.419, 0.002, 0.000, 0.471, 0.471,…
## $ s_40790 <dbl> 0.342, 4.971, 5.431, 5.604, 5.541, 0.948, 0.608, 5.672, 6.013,…
## $ s_40800 <dbl> 0.431, 1.844, 1.954, 2.047, 2.092, 0.936, 0.554, 2.146, 2.257,…
## $ s_40810 <dbl> 0.479, 1.372, 1.628, 1.638, 1.698, 0.965, 0.689, 2.013, 1.826,…
## $ s_40820 <dbl> 0.808, 4.433, 4.769, 5.003, 5.336, 1.929, 1.190, 5.048, 5.338,…
## $ s_40830 <dbl> 0.000, 0.813, 0.881, 0.884, 0.925, 0.002, 0.000, 0.981, 0.979,…
## $ s_40840 <dbl> 0.202, 0.745, 0.842, 0.827, 0.843, 0.431, 0.233, 0.887, 0.875,…
## $ s_40850 <dbl> 0.156, 1.878, 2.095, 2.223, 1.961, 0.598, 0.239, 2.614, 2.563,…
## $ s_40870 <dbl> 0.196, 0.965, 0.986, 1.026, 1.056, 0.425, 0.225, 1.084, 1.123,…
## $ s_40880 <dbl> 0.953, 2.291, 2.476, 2.599, 2.721, 1.790, 1.326, 2.962, 3.104,…
## $ s_40890 <dbl> 6.383, 9.301, 8.584, 8.280, 8.109, 6.109, 6.438, 7.854, 7.518,…
## $ s_40900 <dbl> 2.068, 5.437, 5.814, 5.876, 5.955, 3.828, 2.501, 6.150, 6.324,…
## $ s_40910 <dbl> 1.366, 3.047, 3.350, 3.371, 3.456, 2.437, 1.815, 3.594, 3.768,…
## $ s_40920 <dbl> 0.474, 1.001, 1.060, 1.058, 1.209, 0.845, 0.641, 1.195, 1.232,…
## $ s_40930 <dbl> 2.030, 7.727, 7.448, 7.257, 7.265, 2.536, 1.806, 7.653, 7.692,…
## $ s_40940 <dbl> 0.230, 0.674, 0.681, 0.659, 0.724, 0.439, 0.282, 0.688, 0.682,…
## $ s_40960 <dbl> 0.469, 3.563, 3.922, 3.204, 4.036, 1.183, 0.621, 5.496, 5.345,…
## $ s_40970 <dbl> 0.413, 0.836, 0.949, 0.918, 0.933, 0.730, 0.487, 0.989, 0.986,…
## $ s_40980 <dbl> 0.173, 0.667, 0.727, 0.773, 0.768, 0.379, 0.239, 0.793, 0.756,…
## $ s_40990 <dbl> 2.366, 5.732, 5.977, 6.206, 6.436, 4.497, 3.041, 6.889, 6.899,…
## $ s_41000 <dbl> 1.273, 2.036, 2.114, 2.168, 2.421, 2.167, 1.556, 2.244, 2.331,…
## $ s_41010 <dbl> 0.209, 1.107, 1.186, 1.166, 1.227, 0.523, 0.324, 1.220, 1.302,…
## $ s_41020 <dbl> 0.987, 4.199, 4.366, 4.405, 4.649, 2.204, 1.521, 4.669, 4.828,…
## $ s_41030 <dbl> 0.000, 2.011, 2.217, 2.302, 2.246, 0.008, 0.000, 2.481, 2.436,…
## $ s_41040 <dbl> 0.000, 0.335, 0.380, 0.366, 0.399, 0.000, 0.000, 0.452, 0.463,…
## $ s_41050 <dbl> 0.176, 0.941, 0.993, 1.113, 1.122, 0.406, 0.227, 1.052, 1.094,…
## $ s_41060 <dbl> 0.242, 0.988, 1.091, 1.145, 1.190, 0.543, 0.304, 1.319, 1.314,…
## $ s_41070 <dbl> 0.357, 0.850, 0.943, 0.967, 1.008, 0.607, 0.385, 1.065, 1.204,…
## $ s_41080 <dbl> 0.427, 1.116, 1.216, 1.165, 1.349, 0.754, 0.448, 1.259, 1.224,…
## $ s_41090 <dbl> 0.979, 6.848, 6.922, 7.227, 7.271, 2.410, 1.408, 6.877, 7.537,…
## $ s_41120 <dbl> 0.448, 1.195, 1.357, 1.389, 1.478, 0.765, 0.460, 1.661, 1.701,…
## $ s_41130 <dbl> 0.306, 1.774, 2.029, 2.074, 2.129, 0.689, 0.352, 2.479, 2.556,…
## $ s_41140 <dbl> 0.144, 0.580, 0.627, 0.705, 0.695, 0.403, 0.243, 0.718, 0.690,…
## $ s_41150 <dbl> 0.460, 2.335, 2.588, 2.710, 2.682, 1.142, 0.599, 3.013, 3.020,…
## $ s_41160 <dbl> 0.217, 1.681, 1.733, 1.791, 1.634, 0.395, 0.282, 1.809, 1.901,…
## $ s_41170 <dbl> 1.457, 3.748, 3.977, 4.185, 4.533, 3.341, 1.972, 4.590, 4.511,…
## $ s_41180 <dbl> 0.402, 1.173, 1.403, 1.379, 1.461, 0.883, 0.560, 1.449, 1.417,…
## $ s_41190 <dbl> 0.590, 1.338, 1.345, 1.390, 1.510, 1.072, 0.782, 1.454, 1.496,…
## $ s_41200 <dbl> 0.993, 2.405, 2.569, 2.641, 2.638, 1.805, 1.280, 2.763, 2.847,…
## $ s_41210 <dbl> 0.270, 2.194, 2.449, 2.548, 2.466, 0.759, 0.416, 2.606, 2.639,…
## $ s_41220 <dbl> 1.763, 7.054, 7.519, 7.919, 8.074, 4.535, 3.114, 10.856, 10.85…
## $ s_41230 <dbl> 0.787, 1.902, 1.965, 2.130, 2.182, 1.613, 1.252, 2.370, 2.322,…
## $ s_41240 <dbl> 0.388, 1.998, 2.095, 2.117, 2.106, 0.846, 0.516, 2.500, 2.570,…
## $ s_41250 <dbl> 0.180, 0.842, 0.865, 0.886, 0.847, 0.468, 0.249, 0.963, 0.959,…
## $ s_41260 <dbl> 0.399, 1.621, 1.871, 1.951, 1.985, 0.855, 0.553, 1.983, 2.048,…
## $ s_41270 <dbl> 0.211, 0.640, 0.713, 0.695, 0.724, 0.411, 0.258, 0.821, 0.791,…
## $ s_41280 <dbl> 1.302, 5.812, 6.171, 6.385, 6.334, 2.692, 1.856, 6.595, 6.750,…
## $ s_41290 <dbl> 0.869, 3.335, 3.480, 3.519, 3.730, 2.101, 1.200, 4.059, 4.268,…
## $ s_41300 <dbl> 1.403, 3.508, 3.781, 3.963, 3.967, 2.733, 1.884, 4.306, 4.337,…
## $ s_41310 <dbl> 0.323, 1.795, 2.004, 1.925, 2.067, 0.966, 0.543, 2.028, 2.042,…
## $ s_41320 <dbl> 2.872, 7.703, 8.253, 8.897, 9.639, 6.733, 4.514, 8.922, 9.026,…
## $ s_41330 <dbl> 0.383, 1.637, 1.786, 1.859, 1.819, 0.668, 0.485, 1.836, 1.915,…
## $ s_41340 <dbl> 0.142, 1.866, 2.023, 1.991, 1.888, 0.337, 0.184, 2.254, 2.369,…
## $ s_41350 <dbl> 0.170, 1.272, 1.333, 1.429, 1.375, 0.467, 0.296, 1.419, 1.405,…
## $ s_41360 <dbl> 0.213, 0.619, 0.660, 0.694, 0.805, 0.385, 0.252, 0.756, 0.781,…
## $ s_41380 <dbl> 1.407, 3.983, 4.063, 4.113, 4.189, 2.609, 2.003, 4.444, 4.414,…
## $ s_41400 <dbl> 1.363, 4.775, 5.243, 5.270, 5.184, 3.068, 2.112, 5.809, 5.920,…
## $ s_41410 <dbl> 0.252, 1.706, 1.918, 1.962, 1.997, 0.633, 0.429, 2.071, 2.163,…
## $ s_41420 <dbl> 1.227, 3.937, 4.329, 4.607, 4.666, 2.710, 1.935, 4.785, 4.906,…
## $ s_41430 <dbl> 1.659, 4.577, 4.782, 5.111, 5.266, 3.010, 2.044, 5.464, 5.408,…
## $ s_41440 <dbl> 0.225, 1.512, 1.699, 1.717, 1.736, 0.613, 0.307, 1.868, 1.889,…
## $ s_41450 <dbl> 4.395, 11.058, 11.680, 11.883, 12.771, 8.718, 5.822, 11.698, 1…
## $ s_41460 <dbl> 0.327, 2.040, 2.124, 2.246, 2.362, 0.962, 0.541, 2.402, 2.417,…
## $ s_41480 <dbl> 0.715, 3.194, 3.272, 3.398, 3.346, 1.656, 1.006, 3.609, 3.528,…
## $ s_41490 <dbl> 0.502, 2.390, 2.495, 2.531, 2.202, 1.214, 0.822, 2.903, 2.932,…
## $ s_41500 <dbl> 0.338, 1.710, 1.888, 1.905, 2.049, 0.877, 0.531, 2.001, 2.008,…
## $ s_41510 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ s_41580 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ s_41660 <dbl> 2.942, 12.087, 12.622, 12.936, 13.043, 5.444, 3.579, 13.170, 1…
## $ s_41670 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ s_41680 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ s_41690 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…

Skim only_rides

skimr::skim(only_rides)
(#tab:onle_rides_skim)Data summary
Name only_rides
Number of rows 5733
Number of columns 146
_______________________
Column type frequency:
numeric 146
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
s_40010 0 1.00 1.52 0.57 0.19 0.96 1.66 1.99 2.73 ▂▅▅▇▂
s_40020 0 1.00 3.08 0.98 0.07 2.34 3.38 3.81 5.98 ▂▅▇▇▁
s_40030 0 1.00 1.45 0.46 0.40 1.11 1.47 1.81 2.59 ▂▅▇▆▁
s_40040 0 1.00 5.59 2.92 0.00 1.85 7.02 7.79 9.82 ▅▁▁▇▅
s_40050 0 1.00 3.33 0.81 0.00 2.90 3.63 3.87 4.88 ▁▂▂▇▃
s_40060 0 1.00 4.09 1.26 0.71 2.91 4.47 4.94 6.42 ▁▃▂▇▃
s_40070 0 1.00 6.03 2.61 0.00 3.33 7.03 7.89 18.41 ▅▆▇▁▁
s_40080 0 1.00 4.38 1.16 0.62 3.62 4.63 5.21 10.59 ▂▆▇▁▁
s_40090 0 1.00 1.74 0.80 0.00 1.12 1.92 2.33 3.41 ▃▅▇▇▂
s_40100 0 1.00 3.80 0.94 0.00 3.21 3.99 4.44 5.80 ▁▁▃▇▂
s_40120 0 1.00 2.21 0.87 0.20 1.41 2.44 2.88 4.86 ▃▂▇▃▁
s_40130 0 1.00 0.96 0.30 0.00 0.72 1.05 1.15 3.01 ▂▇▂▁▁
s_40140 0 1.00 1.80 1.00 0.00 1.00 2.21 2.52 4.08 ▅▂▇▆▁
s_40150 0 1.00 0.76 0.41 0.00 0.44 0.75 1.14 1.75 ▅▇▆▇▁
s_40160 0 1.00 2.24 1.27 0.00 0.52 2.95 3.17 5.01 ▆▁▅▇▁
s_40170 0 1.00 1.79 0.84 0.00 1.19 1.68 2.46 8.35 ▇▇▁▁▁
s_40180 0 1.00 1.32 0.56 0.08 0.73 1.51 1.77 2.51 ▃▂▃▇▁
s_40190 30 0.99 3.93 1.85 0.00 2.81 3.69 4.76 13.83 ▃▇▂▁▁
s_40200 0 1.00 5.73 2.39 0.00 3.93 6.01 7.33 13.51 ▂▃▇▁▁
s_40210 0 1.00 0.91 0.48 0.00 0.57 0.88 1.32 1.95 ▅▇▆▇▂
s_40220 0 1.00 1.19 0.42 0.00 0.90 1.10 1.55 2.58 ▁▇▇▅▁
s_40230 0 1.00 4.05 1.44 0.00 2.85 4.59 5.03 9.47 ▂▂▇▁▁
s_40240 30 0.99 6.55 1.84 0.00 5.26 7.30 7.85 11.82 ▁▂▃▇▁
s_40250 0 1.00 1.62 0.53 0.45 1.28 1.61 2.01 3.03 ▃▅▇▅▁
s_40260 0 1.00 7.63 2.60 0.00 5.69 8.24 9.61 14.15 ▁▃▆▇▁
s_40270 0 1.00 1.03 0.28 0.00 0.85 1.16 1.23 1.92 ▁▃▃▇▁
s_40280 0 1.00 1.99 0.56 0.01 1.49 2.21 2.40 3.89 ▁▆▇▇▁
s_40290 0 1.00 1.44 0.51 0.00 1.00 1.54 1.75 3.96 ▂▇▇▁▁
s_40300 0 1.00 0.69 0.28 0.00 0.47 0.68 0.91 2.38 ▃▇▂▁▁
s_40310 0 1.00 2.87 1.12 0.28 1.77 3.27 3.60 5.74 ▃▃▇▅▁
s_40320 0 1.00 4.33 1.62 0.00 3.00 4.56 5.46 9.36 ▂▃▇▃▁
s_40330 0 1.00 9.37 2.49 0.00 8.21 9.32 10.76 24.73 ▁▇▅▁▁
s_40340 0 1.00 2.98 0.70 0.00 2.55 3.25 3.47 4.29 ▁▁▃▇▆
s_40350 0 1.00 4.04 2.34 0.26 1.87 3.59 6.22 9.64 ▇▇▃▇▁
s_40360 0 1.00 2.33 1.02 0.00 1.56 2.67 3.07 4.56 ▂▃▅▇▁
s_40370 0 1.00 7.47 3.26 0.00 4.58 8.32 9.71 16.11 ▃▂▇▅▁
s_40380 0 1.00 13.61 6.57 0.60 6.17 15.89 18.93 26.06 ▅▂▃▇▁
s_40390 0 1.00 3.12 1.13 0.33 1.90 3.69 3.94 7.35 ▂▂▇▁▁
s_40400 0 1.00 0.60 0.22 0.00 0.46 0.63 0.75 1.69 ▃▇▇▁▁
s_40420 0 1.00 0.92 0.39 0.00 0.71 0.96 1.21 2.32 ▂▆▇▂▁
s_40430 0 1.00 2.44 1.04 0.00 1.43 2.68 3.15 4.56 ▃▅▆▇▃
s_40440 0 1.00 0.93 0.50 0.00 0.58 0.91 1.32 9.70 ▇▁▁▁▁
s_40450 30 0.99 10.87 3.65 0.00 7.67 12.18 13.77 18.90 ▁▃▂▇▁
s_40460 0 1.00 4.68 2.54 0.00 1.78 5.60 6.45 12.10 ▅▁▇▂▁
s_40470 0 1.00 1.83 0.78 0.14 1.10 1.99 2.51 5.81 ▆▇▇▁▁
s_40480 0 1.00 1.21 0.34 0.35 0.95 1.31 1.47 2.28 ▂▃▇▃▁
s_40490 0 1.00 1.56 0.72 0.00 1.12 1.50 2.06 8.83 ▇▅▁▁▁
s_40500 2780 0.52 4.85 3.81 0.00 0.00 5.95 7.98 12.44 ▇▃▃▆▂
s_40510 0 1.00 1.44 2.01 0.19 0.82 1.20 1.44 17.30 ▇▁▁▁▁
s_40520 0 1.00 0.66 0.23 0.00 0.49 0.70 0.83 1.48 ▂▃▇▂▁
s_40530 0 1.00 3.96 1.67 0.00 2.62 4.46 5.24 8.97 ▂▃▇▃▁
s_40540 0 1.00 4.89 1.50 1.10 3.70 5.14 5.93 11.57 ▃▇▇▁▁
s_40550 0 1.00 3.41 1.13 0.00 2.26 3.84 4.25 5.48 ▁▃▂▇▃
s_40560 0 1.00 8.97 3.84 0.00 5.22 10.09 11.90 23.94 ▃▃▇▁▁
s_40570 0 1.00 3.25 1.28 0.00 2.45 3.22 4.16 6.29 ▂▃▇▅▂
s_40580 0 1.00 1.52 0.67 0.00 1.10 1.67 2.03 3.88 ▂▅▇▁▁
s_40590 0 1.00 4.55 1.68 0.00 3.82 4.56 5.61 16.88 ▂▇▁▁▁
s_40600 0 1.00 0.33 0.16 0.00 0.22 0.32 0.44 0.70 ▃▇▇▆▂
s_40610 0 1.00 1.07 0.45 0.01 0.56 1.31 1.39 2.35 ▃▂▇▃▁
s_40630 0 1.00 6.51 1.46 0.00 5.88 6.85 7.45 12.06 ▁▂▇▅▁
s_40640 0 1.00 4.08 2.28 0.00 2.20 4.37 5.88 12.52 ▆▇▇▁▁
s_40650 0 1.00 4.33 1.23 0.00 3.67 4.17 5.20 7.92 ▁▂▇▃▁
s_40660 0 1.00 3.14 1.23 0.01 2.14 3.53 4.04 5.25 ▂▃▂▇▃
s_40670 0 1.00 3.58 1.48 0.02 2.43 3.72 4.56 16.36 ▆▇▁▁▁
s_40680 0 1.00 6.23 2.65 0.00 3.86 6.98 7.89 21.62 ▃▇▂▁▁
s_40690 0 1.00 0.71 0.17 0.00 0.62 0.74 0.82 1.87 ▁▇▇▁▁
s_40700 0 1.00 1.17 0.35 0.31 0.89 1.28 1.42 4.15 ▃▇▁▁▁
s_40710 0 1.00 4.32 2.05 0.03 2.64 4.24 5.96 11.31 ▅▇▆▃▁
s_40720 0 1.00 1.14 0.37 0.22 0.81 1.25 1.38 2.59 ▂▃▇▁▁
s_40730 0 1.00 5.26 2.94 0.00 1.31 6.78 7.36 11.09 ▅▁▂▇▁
s_40740 0 1.00 0.76 0.36 0.00 0.54 0.75 1.08 2.04 ▂▇▇▂▁
s_40750 0 1.00 2.32 0.88 0.00 1.39 2.72 2.95 5.06 ▂▃▇▃▁
s_40760 0 1.00 3.28 0.84 0.00 2.83 3.38 3.79 6.16 ▁▂▇▅▁
s_40770 0 1.00 2.77 0.73 0.00 2.37 2.86 3.27 5.32 ▁▃▇▅▁
s_40780 0 1.00 0.74 0.43 0.00 0.42 0.73 1.11 1.64 ▆▇▆▇▃
s_40790 0 1.00 4.85 2.37 0.00 2.20 5.69 6.33 12.30 ▅▁▇▂▁
s_40800 0 1.00 2.80 1.04 0.00 2.19 2.85 3.66 8.92 ▃▇▃▁▁
s_40810 0 1.00 2.28 1.11 0.32 1.17 2.31 3.11 5.09 ▇▅▇▅▂
s_40820 0 1.00 4.51 1.66 0.13 3.39 4.82 5.53 15.68 ▃▇▁▁▁
s_40830 0 1.00 1.22 0.56 0.00 0.93 1.16 1.67 3.59 ▂▇▆▁▁
s_40840 0 1.00 0.66 0.23 0.00 0.44 0.77 0.82 1.16 ▁▃▁▇▁
s_40850 0 1.00 2.87 1.40 0.00 1.88 2.73 4.02 12.90 ▇▇▁▁▁
s_40870 0 1.00 1.04 0.45 0.00 0.67 1.11 1.42 1.83 ▂▅▆▇▆
s_40880 0 1.00 2.51 0.69 0.00 1.98 2.73 2.99 5.39 ▁▃▇▁▁
s_40890 0 1.00 8.93 1.88 0.00 7.70 8.80 10.01 18.55 ▁▂▇▁▁
s_40900 0 1.00 5.41 1.29 1.38 4.44 5.91 6.28 8.58 ▁▂▂▇▁
s_40910 30 0.99 2.93 0.82 0.00 2.37 3.14 3.53 9.55 ▁▇▁▁▁
s_40920 0 1.00 1.40 0.39 0.44 1.18 1.35 1.73 2.40 ▂▅▇▅▁
s_40930 0 1.00 7.32 2.40 1.19 5.03 8.20 9.05 14.97 ▂▂▇▂▁
s_40940 0 1.00 0.70 0.33 0.00 0.48 0.69 0.83 2.90 ▅▇▁▁▁
s_40960 0 1.00 4.08 1.70 0.29 2.23 4.89 5.40 9.31 ▃▂▇▁▁
s_40970 0 1.00 1.08 0.30 0.25 0.86 1.07 1.31 1.83 ▁▅▇▆▂
s_40980 0 1.00 0.83 0.29 0.03 0.60 0.87 1.05 1.58 ▁▅▇▇▁
s_40990 30 0.99 5.12 1.45 0.00 4.19 5.60 6.14 8.74 ▁▂▃▇▁
s_41000 30 0.99 3.48 1.00 0.00 2.95 3.51 4.08 11.70 ▁▇▁▁▁
s_41010 0 1.00 1.26 0.53 0.00 0.79 1.38 1.68 2.20 ▂▃▃▇▃
s_41020 0 1.00 4.87 1.74 0.76 3.60 4.90 6.10 13.15 ▃▇▅▁▁
s_41030 0 1.00 2.32 1.27 0.00 0.88 2.87 3.34 4.51 ▅▁▂▇▂
s_41040 0 1.00 0.64 0.37 0.00 0.37 0.62 0.95 2.44 ▇▇▅▁▁
s_41050 0 1.00 0.90 0.35 0.00 0.75 0.93 1.08 2.35 ▃▇▇▂▁
s_41060 0 1.00 1.25 0.42 0.15 0.86 1.39 1.57 2.28 ▂▃▅▇▁
s_41070 0 1.00 1.17 0.38 0.32 0.86 1.23 1.44 2.28 ▃▃▇▃▁
s_41080 0 1.00 1.13 0.37 0.00 0.88 1.20 1.35 2.80 ▁▅▇▁▁
s_41090 0 1.00 7.17 3.15 0.00 4.68 7.24 9.74 17.70 ▃▆▇▂▁
s_41120 0 1.00 1.88 0.87 0.14 1.31 1.92 2.27 8.53 ▆▇▁▁▁
s_41130 0 1.00 2.10 0.84 0.16 1.25 2.42 2.69 6.76 ▅▇▂▁▁
s_41140 0 1.00 0.57 0.18 0.08 0.43 0.61 0.69 1.34 ▂▅▇▁▁
s_41150 0 1.00 2.52 0.91 0.26 1.61 2.91 3.19 4.93 ▃▃▇▇▁
s_41160 0 1.00 2.63 1.51 0.10 1.38 2.29 4.24 5.44 ▆▇▂▇▅
s_41170 30 0.99 3.45 0.98 0.00 2.90 3.77 4.13 5.99 ▁▂▃▇▁
s_41180 0 1.00 1.56 0.63 0.00 1.23 1.60 1.90 5.46 ▂▇▁▁▁
s_41190 0 1.00 1.33 0.31 0.00 1.17 1.40 1.53 2.15 ▁▁▃▇▁
s_41200 0 1.00 2.46 0.60 0.00 2.12 2.57 2.79 4.70 ▁▂▇▃▁
s_41210 0 1.00 2.04 1.11 0.00 1.03 2.43 2.81 10.48 ▅▇▁▁▁
s_41220 0 1.00 10.23 3.39 0.70 7.99 10.42 12.60 18.06 ▁▅▇▆▂
s_41230 30 0.99 2.63 0.78 0.00 2.10 2.87 3.20 7.39 ▂▇▇▁▁
s_41240 0 1.00 2.17 0.83 0.00 1.35 2.48 2.77 3.85 ▁▃▂▇▁
s_41250 0 1.00 0.75 0.37 0.00 0.44 0.84 0.91 5.50 ▇▁▁▁▁
s_41260 0 1.00 1.67 0.55 0.02 1.15 1.93 2.08 3.24 ▁▅▅▇▁
s_41270 0 1.00 0.83 0.30 0.00 0.58 0.88 1.04 1.94 ▂▃▇▁▁
s_41280 0 1.00 5.39 1.83 0.26 3.44 6.24 6.73 11.33 ▂▃▇▂▁
s_41290 0 1.00 3.25 1.11 0.00 2.44 3.66 4.08 5.62 ▁▂▂▇▁
s_41300 0 1.00 4.58 1.22 0.88 3.82 4.73 5.46 8.15 ▁▃▇▅▁
s_41310 0 1.00 1.94 0.88 0.00 1.26 2.12 2.55 4.53 ▂▃▇▃▁
s_41320 0 1.00 10.41 2.50 1.24 9.15 10.39 12.23 36.32 ▂▇▁▁▁
s_41330 0 1.00 1.71 0.67 0.00 1.06 1.91 2.14 3.09 ▁▃▂▇▂
s_41340 0 1.00 2.13 1.00 0.00 1.16 2.37 2.93 5.08 ▃▂▇▃▁
s_41350 0 1.00 1.29 0.44 0.02 0.90 1.45 1.62 2.67 ▂▅▇▅▁
s_41360 0 1.00 0.86 0.29 0.19 0.61 0.89 1.11 1.50 ▃▃▆▇▁
s_41380 0 1.00 4.06 0.99 0.00 3.30 4.40 4.77 6.59 ▁▂▂▇▁
s_41400 0 1.00 8.29 2.69 1.24 6.29 8.11 10.51 21.73 ▂▇▆▁▁
s_41410 0 1.00 2.74 1.20 0.00 1.86 2.69 3.70 5.09 ▂▃▇▅▅
s_41420 0 1.00 7.27 3.59 0.13 5.17 6.11 7.83 21.33 ▂▇▂▁▁
s_41430 30 0.99 4.21 1.28 0.00 3.34 4.71 5.15 9.67 ▁▃▇▁▁
s_41440 0 1.00 1.71 0.86 0.00 0.97 1.86 2.36 4.38 ▃▃▇▂▁
s_41450 0 1.00 12.91 3.01 0.00 11.68 13.44 14.83 25.28 ▁▂▇▂▁
s_41460 0 1.00 2.06 0.98 0.00 1.24 2.28 2.88 6.14 ▅▇▇▁▁
s_41480 0 1.00 3.19 0.96 0.39 2.61 3.35 3.94 7.25 ▂▃▇▁▁
s_41490 0 1.00 3.09 1.24 0.00 2.14 3.03 3.99 7.89 ▂▇▆▂▁
s_41500 0 1.00 1.90 0.85 0.00 1.23 2.07 2.58 4.04 ▂▃▇▆▁
s_41510 4138 0.28 1.89 0.73 0.00 1.29 1.98 2.44 4.28 ▂▆▇▃▁
s_41580 5702 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 ▇▁▁▁▁
s_41660 0 1.00 13.20 5.50 0.00 8.78 13.61 17.28 28.46 ▂▅▇▅▁
s_41670 151 0.97 0.70 0.25 0.00 0.53 0.71 0.91 1.84 ▂▇▇▁▁
s_41680 4108 0.28 0.67 0.36 0.00 0.38 0.82 0.96 1.26 ▃▅▂▇▃
s_41690 5113 0.11 1.12 0.47 0.00 0.86 1.19 1.39 3.55 ▂▇▂▁▁

Select stations with missing values only

only_rides %>% 
     select_if(~any(is.na(.))) %>% 
     plot_missing()

MCAR test

mcar_test(only_rides)
## Warning in norm::prelim.norm(data): NAs introduced by coercion to integer range
## # A tibble: 1 × 4
##   statistic    df p.value missing.patterns
##       <dbl> <dbl>   <dbl>            <int>
## 1    18032.   842       0                7

Plot pattern of missingness using an upset plot

gg_miss_upset(only_rides, nsets = 10)

Stations 40500 (Washington), 41680 (Oakton-Skokie), 41510 (Morgan), 41690 (Cermak-McCormick Place) and 41580 (Homan) missing values are highly related.