5.7 Supervised algorithm #1: Random forest
“A (random) forest filled with decision trees”
set.seed(17)
# we will do no resampling based prediction error
# although it is advised to do so even for random forests
trctrl <- trainControl(method = "none")
# we will now train random forest model
rfFit <- train(subtype~.,
data = training,
method = "ranger",
trControl=trctrl,
importance="permutation", # calculate importance
tuneGrid = data.frame(mtry=100,
min.node.size = 1,
splitrule="gini")
)
# print OOB error
rfFit$finalModel$prediction.error
## [1] 0.03076923