15.4 The rgeoda package
## name value
## 1 number of observations: 2495
## 2 is symmetric: TRUE
## 3 sparsity: 0.00228786229774178
## 4 # min neighbors: 1
## 5 # max neighbors: 13
## 6 # mean neighbors: 5.70821643286573
## 7 # median neighbors: 6
## 8 has isolates: FALSE
?queen_weights
Local Multivariate Geary Statistics
?local_multigeary
library(parallel)
lisa <- local_multigeary(Geoda_w,
pol_pres15[c("I_turnout", "II_turnout")],
cpu_threads = max(detectCores() - 1, 1),
permutations = 99999,
seed = 1)
## [1] TRUE
Let’s use the Local Geary’s
measure to compute local adaptation of Geary’s C statistic of spatial autocorrelation.
The Local Geary
uses squared differences to measure dissimilarity unlike the Local Moran
. Low values of the Local Geary indicate positive spatial autocorrelation and large refers to negative spatial autocorrelation.
?localC_perm returns a pseudo p-value
locMvC_p <- pol_pres15 |>
st_drop_geometry() |>
subset(select = c(I_turnout, II_turnout)) |>
localC_perm(lw_q_W, nsim=9999, iseed=1)
## [1] TRUE
## Pr(z != E(Ci)) Sim Pr(folded) Sim
## [1,] 0.0002 0.0001
## [2,] 0.9984 0.4992
## rgeoda
## spdep Positive <NA> Sum
## Positive 255 4 259
## <NA> 67 2169 2236
## Sum 322 2173 2495
library(tmap)
m5 <- tm_shape(pol_pres15) +
tm_fill("hs_MvCa",
palette = RColorBrewer::brewer.pal(4, "Set3")[c(4, 1)],
colorNA = "grey95",
textNA = "Not \"interesting\"",
title = "Both rounds turnout spdep\nLocal Multivariate Geary C")