5.3 Standardized incidence ratio

Estimation of the disease risk estimates in each of the areas

SIRi=YiEi Ei is the expected counts or the expected total number of cases, is the sum of the multiplication of the rate of the number of cases divided by population in j r(s)j, and n(i)j the population in stratum j of area i.

Ei=mj=1r(s)jn(i)j

SIRi={>1higher=1equal<1lower}risk than expected in area i

When applied to mortality data, the ratio is known as the standardized mortality ratio (SMR).

Example:

d <- pennLC$data%>%
  group_by(county) %>% 
  summarize(Y = sum(cases))

head(d)
## # A tibble: 6 × 2
##   county        Y
##   <fct>     <int>
## 1 adams        55
## 2 allegheny  1275
## 3 armstrong    49
## 4 beaver      172
## 5 bedford      37
## 6 berks       308
pennLC$data <- pennLC$data %>%
  arrange(county,race,gender,age)
E <- expected(
  population = pennLC$data$population,
  cases = pennLC$data$cases, n.strata = 16
)
d$E <- E[match(d$county, unique(pennLC$data$county))]


head(d)
## # A tibble: 6 × 3
##   county        Y      E
##   <fct>     <int>  <dbl>
## 1 adams        55   69.6
## 2 allegheny  1275 1182. 
## 3 armstrong    49   67.6
## 4 beaver      172  173. 
## 5 bedford      37   44.2
## 6 berks       308  301.
d$SIR <- d$Y / d$E
head(d)
## # A tibble: 6 × 4
##   county        Y      E   SIR
##   <fct>     <int>  <dbl> <dbl>
## 1 adams        55   69.6 0.790
## 2 allegheny  1275 1182.  1.08 
## 3 armstrong    49   67.6 0.725
## 4 beaver      172  173.  0.997
## 5 bedford      37   44.2 0.837
## 6 berks       308  301.  1.02
map <- merge(map, d)
mapsf <- st_as_sf(map)
ggplot(mapsf) + geom_sf(aes(fill = SIR)) +
  scale_fill_gradient2(
    midpoint = 1, low = "blue", mid = "white", high = "red"
  ) +
  theme_bw()
SIR of lung cancer in Pennsylvania counties

Figure 5.2: SIR of lung cancer in Pennsylvania counties