5.3 Standardized incidence ratio
Estimation of the disease risk estimates in each of the areas
SIRi=YiEi Ei is the expected counts or the expected total number of cases, is the sum of the multiplication of the rate of the number of cases divided by population in j r(s)j, and n(i)j the population in stratum j of area i.
Ei=m∑j=1r(s)jn(i)j
SIRi={>1higher=1equal<1lower}risk than expected in area i
When applied to mortality data, the ratio is known as the standardized mortality ratio (SMR).
Example:
<- pennLC$data%>%
d group_by(county) %>%
summarize(Y = sum(cases))
head(d)
## # A tibble: 6 × 2
## county Y
## <fct> <int>
## 1 adams 55
## 2 allegheny 1275
## 3 armstrong 49
## 4 beaver 172
## 5 bedford 37
## 6 berks 308
$data <- pennLC$data %>%
pennLCarrange(county,race,gender,age)
<- expected(
E population = pennLC$data$population,
cases = pennLC$data$cases, n.strata = 16
)
$E <- E[match(d$county, unique(pennLC$data$county))]
d
head(d)
## # A tibble: 6 × 3
## county Y E
## <fct> <int> <dbl>
## 1 adams 55 69.6
## 2 allegheny 1275 1182.
## 3 armstrong 49 67.6
## 4 beaver 172 173.
## 5 bedford 37 44.2
## 6 berks 308 301.
$SIR <- d$Y / d$E d
head(d)
## # A tibble: 6 × 4
## county Y E SIR
## <fct> <int> <dbl> <dbl>
## 1 adams 55 69.6 0.790
## 2 allegheny 1275 1182. 1.08
## 3 armstrong 49 67.6 0.725
## 4 beaver 172 173. 0.997
## 5 bedford 37 44.2 0.837
## 6 berks 308 301. 1.02
<- merge(map, d) map
<- st_as_sf(map) mapsf
ggplot(mapsf) + geom_sf(aes(fill = SIR)) +
scale_fill_gradient2(
midpoint = 1, low = "blue", mid = "white", high = "red"
+
) theme_bw()

Figure 5.2: SIR of lung cancer in Pennsylvania counties