7.3 SIRs

\[SIR_{ij}=\frac{Y_{ij}}{E_{ij}}\]

d$SIR <- d$Y / d$E
head(d)
##   county year  Y         E       SIR
## 1  Adams 1968  6  8.278660 0.7247549
## 2  Adams 1969  5  8.501767 0.5881130
## 3  Adams 1970  9  8.779313 1.0251372
## 4  Adams 1971  6  9.175276 0.6539313
## 5  Adams 1972 10  9.548736 1.0472591
## 6  Adams 1973  7 10.099777 0.6930846
dw <- d%>%
  pivot_wider(names_from=year,values_from = c("Y","E","SIR"))
head(dw)
## # A tibble: 6 × 64
##   county   Y_1968 Y_1969 Y_1970 Y_1971 Y_1972 Y_1973 Y_1974 Y_1975 Y_1976 Y_1977
##   <chr>     <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>
## 1 Adams         6      5      9      6     10      7     12     12     10      7
## 2 Allen        32     33     39     44     36     38     41     35     54     63
## 3 Ashland      15     19     12     12     12     11     12     18     15     15
## 4 Ashtabu…     27     24     25     37     44     29     37     26     40     41
## 5 Athens       12      9     12     12     28     23     11     20     25     18
## 6 Auglaize      7     10      8     16      6     15     12     12     20     18
## # … with 53 more variables: Y_1978 <int>, Y_1979 <int>, Y_1980 <int>,
## #   Y_1981 <int>, Y_1982 <int>, Y_1983 <int>, Y_1984 <int>, Y_1985 <int>,
## #   Y_1986 <int>, Y_1987 <int>, Y_1988 <int>, E_1968 <dbl>, E_1969 <dbl>,
## #   E_1970 <dbl>, E_1971 <dbl>, E_1972 <dbl>, E_1973 <dbl>, E_1974 <dbl>,
## #   E_1975 <dbl>, E_1976 <dbl>, E_1977 <dbl>, E_1978 <dbl>, E_1979 <dbl>,
## #   E_1980 <dbl>, E_1981 <dbl>, E_1982 <dbl>, E_1983 <dbl>, E_1984 <dbl>,
## #   E_1985 <dbl>, E_1986 <dbl>, E_1987 <dbl>, E_1988 <dbl>, SIR_1968 <dbl>, …