7.1 Data
# remotes::install_github("Paula-Moraga/SpatialEpiApp")
library(SpatialEpiApp)
<- "SpatialEpiApp/data/Ohio/dataohiocomplete.csv"
namecsv <- read.csv(system.file(namecsv, package = "SpatialEpiApp"))
dohio head(dohio)
## county gender race year y n NAME
## 1 1 1 1 1968 6 8912 Adams
## 2 1 1 1 1969 5 9139 Adams
## 3 1 1 1 1970 8 9455 Adams
## 4 1 1 1 1971 5 9876 Adams
## 5 1 1 1 1972 8 10281 Adams
## 6 1 1 1 1973 5 10876 Adams
Map of Ohio
library(rgdal)
library(sf)
<- system.file(
nameshp "SpatialEpiApp/data/Ohio/fe_2007_39_county/fe_2007_39_county.shp",
package = "SpatialEpiApp")
<- readOGR(nameshp, verbose = FALSE)
map
plot(map)
Calculate the observed and expected counts, and the SIRs for each county and year, and create a data frame.
library(tidyverse)
<- dohio %>%
d group_by(county=NAME,year) %>%
summarize(Y=sum(y))%>%
ungroup()%>%
arrange(year)
head(d)
## # A tibble: 6 × 3
## county year Y
## <chr> <int> <int>
## 1 Adams 1968 6
## 2 Allen 1968 32
## 3 Ashland 1968 15
## 4 Ashtabula 1968 27
## 5 Athens 1968 12
## 6 Auglaize 1968 7