5.5 Spatio-temporal small area disease risk estimation
Yij∼Po(Eijϕij)
A Spatio-temporal model with parametric time trends
log(ϕij=α+ui+vi+(β+δi)×tj
Y∼f(bym)+f(iid)+idtime
<- Y ~
formula f(idarea, # area index
model = "bym",
graph = g) +
f(idarea1, # area index
idtime, model = "iid") +
# time index idtime.
f(idarea,model = "bym", graph = g)
is the area random effect ui+vi.f(idarea1, idtime, model = "iid")
. is the differential time trend δi×tjidtime
is the global trend β×tj
An alternative is from Knorr-Held (2000) specify models with interaction between space and time:
<- Y ~ f(idarea, model = "bym", graph = g) +
formula f(idtime, model = "rw2") +
f(idtime1, model = "iid") +
f(idareatime, model = "iid")
# f(idareatime, model = "iid")
f(idtime,
model = "iid",
group = idarea,
ontrol.group = list(model = "besag", graph = g)
)
f(idarea,
model = "iid",
group = idtime, control.group = list(model = "rw2")
)
f(idarea,
model = "besag", graph = g,
group = idtime, control.group = list(model = "rw2")
)