5.5 Spatio-temporal small area disease risk estimation
\[Y_{ij}\sim{Po(E_{ij}\phi_{ij})}\]
A Spatio-temporal model with parametric time trends
\[log(\phi_{ij}=\alpha+\mathit{u_i}+\mathit{v_i}+(\beta+\delta_i) \times \mathit{t_j}\]
\[Y\sim f(bym)+f(iid)+ \text{idtime}\]
<- Y ~
formula f(idarea, # area index
model = "bym",
graph = g) +
f(idarea1, # area index
idtime, model = "iid") +
# time index idtime.
f(idarea,model = "bym", graph = g)
is the area random effect \(\mathit{u_i}+\mathit{v_i}\).f(idarea1, idtime, model = "iid")
. is the differential time trend \(\delta_i \times \mathit{t}_j\)idtime
is the global trend \(\beta \times \mathit{t}_j\)
An alternative is from Knorr-Held (2000) specify models with interaction between space and time:
<- Y ~ f(idarea, model = "bym", graph = g) +
formula f(idtime, model = "rw2") +
f(idtime1, model = "iid") +
f(idareatime, model = "iid")
# f(idareatime, model = "iid")
f(idtime,
model = "iid",
group = idarea,
ontrol.group = list(model = "besag", graph = g)
)
f(idarea,
model = "iid",
group = idtime, control.group = list(model = "rw2")
)
f(idarea,
model = "besag", graph = g,
group = idtime, control.group = list(model = "rw2")
)