14.1 SVM model as motivating example
We’re interested in developing a classification model to classify sex for the palmers penguins dataset using a radial basis function support vector machine (svm).
library(tidyverse)
library(tidymodels)
library(palmerpenguins)
library(patchwork)
library(finetune)
tidymodels_prefer()
::conflict_prefer("penguins", "palmerpenguins", quiet = TRUE) conflicted
<- penguins %>%
penguins_df filter(!is.na(sex)) %>% # discarding NA obs
select(-year, -island) # not useful
<- initial_split(penguins_df, strata = sex)
splits
<- vfold_cv(training(splits), v = 5, strata = sex)
penguins_folds
set.seed(420)
<- metric_set(roc_auc) # accuracy, a classification metric roc_res
Let’s fit a radial basis function support vector machine to the palmers penguins and tune the SVM cost parameter (cost()
) and the σ parameter in the kernel function (rbf_sigma
):
<-
svm_rec recipe(sex ~ ., data = penguins_df)
<-
svm_spec svm_rbf(cost = tune(), rbf_sigma = tune()) %>%
set_mode("classification") %>%
set_engine("kernlab")
Now, let’s set up our workflow()
and feeding it our svm model
<-
svm_wflow workflow() %>%
add_model(svm_spec) %>%
add_recipe(svm_rec)
Let’s zoom in on the default parameter values for our two tuning parameters:
cost()
## Cost (quantitative)
## Transformer: log-2 [1e-100, Inf]
## Range (transformed scale): [-10, 5]
rbf_sigma()
## Radial Basis Function sigma (quantitative)
## Transformer: log-10 [1e-100, Inf]
## Range (transformed scale): [-10, 0]
We can change them:
<-
svm_param %>%
svm_wflow parameters() %>%
update(rbf_sigma = rbf_sigma(c(-7, -1)))
Because the methods that we will go over later need some resampled performance statistics before proceeding, we can use tune_grid()
function to resample these values:
<-
start_grid %>%
svm_param update(
cost = cost(c(-6, 1)),
rbf_sigma = rbf_sigma(c(-6, -4))) %>%
grid_regular(levels = 2)
set.seed(2)
<-
svm_initial %>%
svm_wflow tune_grid(resamples = penguins_folds, grid = start_grid, metrics = roc_res)
collect_metrics(svm_initial)
## # A tibble: 4 × 8
## cost rbf_sigma .metric .estimator mean n std_err .config
## <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 0.0156 0.000001 roc_auc binary 0.588 5 0.171 Preprocessor1_Model1
## 2 2 0.000001 roc_auc binary 0.588 5 0.171 Preprocessor1_Model2
## 3 0.0156 0.0001 roc_auc binary 0.588 5 0.172 Preprocessor1_Model3
## 4 2 0.0001 roc_auc binary 0.836 5 0.0545 Preprocessor1_Model4
We can see that there’s one point in which the performance is better. There results can be fed into iterative tuning functions as initial values, which we’ll see shortly.