12.10 Add tuning parameters:
We can add main arguments (mtry, min_n) and engine specific arguments (regularization.factor)
<- rand_forest(mtry = tune(), trees = 2000, min_n = tune()) %>%
rf_spec_tuned set_engine("ranger", regularization.factor = tune("reg")) %>%
set_mode("regression")
tune()
returns an expression. This tags the parameters for optimization within the tidymodels framework
parameters(rf_spec_tuned)
## Collection of 3 parameters for tuning
##
## identifier type object
## mtry mtry nparam[?]
## min_n min_n nparam[+]
## reg regularization.factor nparam[+]
##
## Model parameters needing finalization:
## # Randomly Selected Predictors ('mtry')
##
## See `?dials::finalize` or `?dials::update.parameters` for more information.
The notation nparam[+]
indicates a complete numeric parameter, nparam[?]
indicates a missing value that needs to be addressed.