Probit Approximation

  • avoid long computation time
  • assume likelihood is also normally distributed

\[p(w|D) = \text{N}(w|\mu, \Sigma)\]

Approximation of Posterior

  • sigmoid is similar to normal CDF

\[\sigma(a) \approx \Phi\left(\frac{a\sqrt{\pi}}{\sqrt{8}}\right)\]

  • approx posterior via sigmoid

\[\begin{array}{rcccl} p(y=1|x,D) & = & \sigma\left(\frac{m}{\sqrt{1+\frac{\pi v}{8}}}\right) \\ m & = & \text{E}[a] & = & x^{T}\mu \\ v & = & \text{V}[a] & = & x^{T}\Sigma x \\ a & = & x^{T}w \end{array}\]

  • produces estimates that are closer to the decision boundary