FLDA Ideas
- \(S_{B}, S_{W}\): scatter matrices (estimate covariance)
- \(W\): projection matrix from \(D\) to \(K\) dimensions
Objective: maximize
\[J(W) = \displaystyle\frac{|W^{T}S_{B}W|}{|W^{T}S_{W}W|}\]
- eigenvalue scenario instead of gradient descent